Research Highlight

Auroral molecular-emission effects on the atomic oxygen line at 777.4 nm (Oyama et al., 2018)2021.5.20

a) Height profiles of the EISCAT-measured electron density at 18:31:30 UT (blue) and 18:33:30 UT (orange) on March 2, 2017. Measurement uncertainty of +/-1s is marked by a horizontal bar in each color. b) An image of the Tromsoe all-sky camera, which was taken at 18:33:50 UT. The direction of the EISCAT radar and spectrograph measurements is marked by a yellow circle. Five faint lines from the northern edge represent contaminations of a sodium lidar. c) Spectrum measured at 18:33:29 UT on March 2, 2017, at wavelength of 750-800 nm. A vertical dashed line is marked at 777.4 nm

One of the representative auroral emission lines that radiates from F-region heights and is measurable on the ground is the 777.4 nm line from excited atomic oxygen. This line has been adopted, along with another E-region emission line, for example 427.8 nm, to estimate the mean energy and total energy flux of precipitating auroral electrons. The influence of emissions from part of the molecular nitrogen band, which mainly radiate from E-region heights, should be carefully evaluated because it might overlap the 777.4 nm atomic oxygen line in the spectrum. We performed statistical analysis of auroral spectrograph measurements that were obtained during the winter of 2016-2017 in Tromsoe, Norway, to derive the ratio of the intensity of the 777.4 nm atomic oxygen line to that of the net measurement through a typically used optical filter with a full width at half maximum of a few nm. The ratio had a negative trend against geomagnetic activity, with a primary distribution of 0.5-0.7 and a minimum value of 0.3 for the most active auroral condition in this study. This result suggests that the 30-50% emission intensities measured through the optical filter may be from the molecular nitrogen band.

Oyama, S., T. T. Tsuda, K. Hosokawa, Y. Ogawa, Y. Miyoshi, S. Kurita, A. E. Kero, R. Fujii, Y. Tanaka, A. Mizuno, T. Kawabata, B. Gustavsson, and T. Leyser, Auroral molecular-emission effects on the atomic oxygen line at 777.4 nm, Earth Planets Space, 70, 166, doi:10.1186/s40623-018-0936-z, 2018.

カテゴリ:Aurora


Survey of conditions for artificial aurora experiments at EISCAT Tromsoe using dynasonde data (Tsuda et al., 2018)2021.5.20

(upper) Year-to-year variation in the occurrence rate of possible days for conducting artificial aurora experiments from 2000 to 2017. The red indicates results in the case of 2.7-MHz frequency, and the black indicates results in the case of 4-MHz frequency. (lower) Year-to-year variation in 1-year-averaged F10.7 from 2000 to 2017

We report a brief survey of matching conditions for artificial aurora optical experiments utilizing the second electron gyro-harmonic (2.7-MHz frequency) in F region heating with O-mode at the EISCAT Tromsoe site using dynasonde data from 2000 to 2017. Our survey indicates the following: The possible conditions for successful artificial aurora experiments are concentrated on twilight hours in both evening and morning, compared with late night hours; the possible conditions appear in fall, winter, and spring, while there is no chance in summer, and the month-to-month variation among fall, winter, and spring is not so clear; the year-to-year variation is well correlated with the solar activity. These characteristics in the case of 2.7-MHz frequency are basically similar to those previously reported in the case of 4-MHz frequency. However, the number of days meeting the possible condition in the case of 2.7-MHz frequency is obviously large, compared with that in the case of 4-MHz frequency. In particular, unlike the 4-MHz frequency operation, the 2.7-MHz frequency operation can provide many chances for successful artificial aurora experiments even during the solar minimum.

Tsuda, T. T., M. T. Rietveld, M. J. Kosch, S. Oyama, Y. Ogawa, K. Hosokawa, S. Nozawa, T. Kawabata, and A. Mizuno, Survey of conditions for artificial aurora experiments by the second electron gyro-harmonic at EISCAT Tromsoe using dynasonde data, Earth Planets Space, 70, 94, doi:10.1186/s40623-018-0864-y, 2018. Tsuda, T. T., M. T. Rietveld, M. J. Kosch, S. Oyama, K. Hosokawa, S. Nozawa, T. Kawabata, A. Mizuno, and Y. Ogawa, Survey of conditions for artificial aurora experiments at EISCAT Tromsoe using dynasonde data, Earth Planets Space, 70, 40, doi:10.1186/s40623-018-0805-9, 2018.

カテゴリ:Aurora


Ionospheric variation during pulsating aurora (Hosokawa and Ogawa, JGR, 2015)2017.2.18

Figure : (Left) Altitude profile of the electron density during the ON (red) and OFF (blue) phases of Psa for Interval I to V, respectively. (Right) Difference between the ON and OFF profiles in the left panel, which corresponds to the true altitude profile of the electron density at the time of PsA.

We have statistically analyzed data from the European Incoherent Scatter (EISCAT) UHF/VHF radars in Tromsø (69.60°N, 19.20°E), Norway, to reveal how the occurrence of pulsating auroras (PsAs) modifies the electron density profile in the ionosphere. By checking five winter seasons' (2007–2012) observations of all-sky aurora cameras of the National Institute of Polar Research in Tromsø, we have extracted 21 cases of PsA. During these PsA events, either the UHF or VHF radar of EISCAT was operative and the electron density profiles were obtained along the field-aligned or vertical direction near the zenith. From these electron density measurements, we calculated hmE (E region peak height) and NmE (E region peak density), which are proxies for the energy and flux of the precipitating PsA electrons, respectively. Then, we examined how these two parameters changed during the evolution of 21 PsA events in a statistical fashion. The results can be summarized as follows: (1) hmE is lower (the energy of precipitation electrons is higher) during the periods of PsA than that in the surrounding interval; (2) when NmE is higher (flux of PsA electrons is larger), hmE tends to be lower (precipitation is harder); (3) hmE is lower and NmE is larger in the later magnetic local time; and (4) when the AE index during the preceding substorm is larger, hmE is lower and NmE is larger. These tendencies are discussed in terms of the characteristics of particles and plasma waves in the source of PsA in the magnetosphere. In addition to the statistics of the EISCAT data, we carried out several detailed case studies, in which the altitude profiles of the electron density were derived by separating the On and Off phases of PsA. This allows us to estimate the true altitude profiles of the PsA ionization, which can be used for estimating the characteristic energy of the PsA electrons and better understanding the wave-particle interaction process in the magnetosphere.

Hosokawa, K., and Y. Ogawa (2015), Ionospheric variation during pulsating aurora, J. Geophys. Res. Space Physics, 120, 5943–5957, doi:10.1002/2015JA021401.

カテゴリ:Aurora,Ionosphere


Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations (Miyoshi et al., JGR, 2015)2017.2.18

Figure 8. (a) Frequency-time diagram of the LBC waves used in the GEMSIS-RBW simulation. (b) Energy spectrum at the magnetosphere observed by the Van Allen Probe-A satellite (blue triangle), at the ionosphere altitude estimated by the CARD inversion method using the EISCAT observation data (red triangle). Purple hexagons indicate the precipitated flux simulated by GEMSIS-RBW.

Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.

Miyoshi, Y., S. Oyama, S. Saito, S. Kurita, H. Fujiwara, R. Kataoka, Y. Ebihara, C. Kletzing, G. Reeves, O. Santolik, M. Clilverd, C. J. Rodger, E. Turunen, and F. Tsuchiya (2015), Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations. J. Geophys. Res. Space Physics, 120, 2754–2766, doi: 10.1002/2014JA020690.

カテゴリ:Aurora,M-I Coupling


Height-dependent ionospheric variations in the vicinity of nightside poleward expanding aurora after substorm onset (Oyama et al., JGR, 2014)2017.2.18

Figure: Height profile of (a) electron density, (b) electron temperature, and (c) ion temperature from the superposed epoch analysis of the EISCAT data. Time intervals are grouped by four colors (black: 60

High-latitude ionospheric variations at times near auroral substorms exhibit large temporal variations in both vertical and horizontal extents. Statistical analysis was made of data from the European Incoherent Scatter UHF radar at Tromsø, Norway, and International Monitor for Auroral Geomagnetic Effects magnetometer for finding common features in electron density, ion and electron temperatures and relating these to currents and associated heating. This paper particularly focused on the height dependencies. Results show clear evidences of large electric field with corresponding frictional heating and Pedersen currents located just outside the front of the poleward expanding aurora, which typically appeared at the eastside of westward traveling surge. At the beginning of the substorm recovery phase, the ionospheric density had a large peak in the E region and a smaller peak in the F region. This structure was named as C form in this paper based on its shape in the altitude-time plot. The lower altitude density maximum is associated with hard auroral electron precipitation probably during pulsating aurora. We attribute the upper F region density maximum to local ionization by lower energy particle precipitation and/or long-lived plasma that is convected horizontally into the overhead measurement volume from the dayside hemisphere.

Oyama, S., Y. Miyoshi, K. Shiokawa, J. Kurihara, T. T. Tsuda, and B. J. Watkins (2014), Height-dependent ionospheric variations in the vicinity of nightside poleward expanding aurora after substorm onset, J. Geophys. Res. Space Physics, 119, 4146–4156, doi:10.1002/2013JA019704.

カテゴリ:Aurora,Ionosphere


© 2017 EISCAT Japan