極域における気球観測 Mar. 31, 2008

光学および電気化学式オゾンゾン デによるオゾン高度分布観測

¹村田功、²佐藤薫、³冨川喜弘、³堤雅基、³橋田元、⁴岡野章一、⁵斎藤 芳隆、⁵松坂幸彦、⁵並木道義、⁵山上隆正、⁵水田栄一、⁵河田二朗

¹東北大学大学院環境科学研究科、²東京大学大学院理学系研究科、 ³国立極地研究所、⁴東北大学大学院理学研究科、 ⁵JAXA/ISAS

光学・ECCオゾンゾンデによる 成層圏オゾン観測

- フロンの影響が出やすい上部成層圏オゾン
 を直接観測したい
- ・オゾン・気温・風速の変動から
 ・オゾン・気温・風速の変動から
 ・オゾン・気温・風速の

○ 高々度でのオゾン観測ができる光学オ ゾンゾンデと30km以下で精度の良い ECCオゾンゾンデを組み合わせて 0-50km付近のオゾンを観測

・オゾン破壊に関わる他の成分も観測したい □
〉
分光器の導入

光学オゾンゾンデ (250 x 170 x 250 mm,2.2kg)

ECC光学オゾンゾンデ (約1kg)

ECCオゾンゾンデによるオゾンホール期の観測 (2003年、昭和基地)

オゾン破壊はどの高度 でもほぼ同時に起こる が、回復は上方から 徐々に下方へと進む

図は省略

[Sato et al. (in preparation)]

光学オゾンゾンデ、ECC同時観測(2003年、昭和基 地)

図は省略

Fig. 1. Ozone and wind profiles observed September 13, 2007.

Fig.4 Deviations in ozone and temperature.

Fig.4 Deviations in ozone and temperature.

Fig. 3 Temporal variations of upper stratospheric ozone.

分光器を用いた光学オゾンゾンデ

・200 -850 nmのスペクトルを同時に観測
 NO₂, OClO, BrOも同時観測可能(かも)
 CIOOCIの光解離が従来考えられていたより遅いという
 論文[Pope et al., 2007]が契機となり、オゾンホールの
 反応系が再注目されているので、OClOやBrOが測れると
 面白い

・ドイツのアルフレッド・ウェーゲナー研究所において
 開発実績あり
 ・オゾンに関しては検証観測済み

 [Mareile A. Wolf, Doctor Thesis,

 2005]

NO₂, OClO, BrOの成層圏コラム量も測定できる可能性あり

まとめ

- 高高度気球・光学オゾンゾンデ・ECCオゾンゾンデ
 を組み合わせることにより、地上から上部成層圏
 までのオゾン高度分布観測が可能
- 2. オゾンホール期の詳細な高度分布変動の他、大気 重力波の観測ができる
- 3. 装置の改良により、NO₂, OClO, BrOの成層圏コラ ム量も測定できる可能性あり

4. ECCではMATCH観測も実施