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Abstract—Solar modulation of galactic cosmic rays around the solar minimum in 2019-2020 looks
different in the secondary neutrons and muons observed at the ground. To compare the solar modulation
of primary cosmic rays in detail, we must remove the possible seasonal variations caused by the
atmosphere and surrounding environment. As such surrounding environment effects, we evaluate the snow
cover effect on neutron count rate and the atmospheric temperature effect on muon count rate, both simul-
taneously observed at Syowa Station in the Antarctic (69.01° S, 39.59° E). A machine learning technique,
Echo State Network (ESN), is applied to estimate both effects hidden in the observed time series of the
count rate. We show that the ESN with the input of GDAS data (temperature time series at 925, 850,
700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, and 20 hPa) at the local position can be useful
for both the temperature correction for muons and snow cover correction for neutrons. The corrected muon
count rate starts decreasing in late 2019, preceding the corrected neutron count rate which starts decreasing
in early 2020, possibly indicating the rigidity-dependent solar modulation in the heliosphere.

Keywords: Galactic cosmic rays / Solar modulation / Ground observation / Neutron monitor / Muon detector /
Seasonal variation / Snow cover / Machine learning / Echo State Network

1 Introduction magnetic field structure of CMEs by analyzing the Global
Muon Detector Network (GMDN) data (Kihara et al., 2021).

We started neutron and muon measurements at Syowa Sta-
tion in the Antarctic (69.01° S, 39.59° E; the vertical cutoff
rigidity is 0.4 GV) in February 2018 (Kato et al., 2021). The
monitor network is utilized for predicting the radiation dose mmultaneous measurements of neutron and muon ﬁu?c offer a
of aircrews during Ground-Level Enhancement (GLE) events ~ Unique perspective relative to the other neutron monitors a!nd
(Kataoka et al., 2014; Sato et al., 2018). The long-term GCR muon dete'tho?s. that do not share the same location. The median
primary rigidities for the neutron monitor and muon detector
(vertical) are 16.3 GV and 53.6 GV, respectively (Appendix
A). We estimated the median primary rigidities by integrating
the response functions of secondary neutrons and muons to
primary cosmic rays (Nagashima et al., 1989; Murakami
"Corresponding author: kataoka. ryuho@nipr. ac. jp et al., 1979).

Measuring Galactic Cosmic Rays (GCR) is important,
playing a unique role in diagnose the space weather and space
climate. For example, the real-time data of worldwide neutron

data is also used to examine the solar cycle prediction of the air-
crew dose (Miyake et al., 2017). Furthermore, for transient
space weather events such as Coronal Mass Ejections (CMEs)
passing through the Earth, we can also estimate the large-scale
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During the 4-year cosmic ray observation at Syowa Station,
the solar activity gradually changes across the solar minimum.
Figure 1 shows the solar minimum at the end of 24th and begin-
ning of 25th 11-year solar cycles. The top panel shows the Sun’s
polar magnetic field (http://wso.stanford.edu/). The north-south
average of the magnetic field strength (green dots) started
decreasing in late 2019. The second panel shows the sunspot
number (https://www.sidc.be/silso/), passing through the solar
minimum in late 2019. The bottom panel shows the neutron
monitor count rate at Oulu (https://cosmicrays.oulu.fi/), starting
to decrease in early 2020.

This paper aims to introduce new methods for corrections of
temperatures and snow cover effects using the first 4-year data
of neutron count rate and muon count rate at Syowa Station.
Specifically, the temperature correction is essential for muons,
while the snow cover correction is vital for neutrons (Biitikofer,
2017). Section 2.2 proposes a new method for the snow cover
correction based on the analytical radiation model. In Section 3,
we show comparison of machine learning approach to other
methods that are more rooted in physics of the processes
involved and we discuss that a machine-learning technique
combined with meteorological reanalysis data can be useful
for these different corrections for muons and neutrons. Finally,
concluding remarks are summarized in Section 4.

2 Methods of analysis

2.1 Mass weighted temperature correction for muon
count rate

The muons are created in the air shower developing in the
atmosphere. The atmospheric density and temperature profiles
affect the production and propagation of muons. Due to the
short lifetime of muons, muon count rate at ground level
depends on the distance between production layer and detection
plane. The count rate decreases with the increase of this distance
due to atmospheric expansion caused by the increase of atmo-
spheric temperature. Therefore, applying the so-called tempera-
ture corrections to muon data is necessary before analyzing the
primary cosmic ray variations.

The Mass Weighted (MSS) method (Mendonsa et al., 2016)
first calculates the mass-weighted temperature Tyss from the
temperatures 7; at an atmospheric layer at altitude 5; as

n

Tuss = Zw(hi)T(hi)~ (1)

i=0

The air-mass weight function w is defined as

wlhi) = (x(hi) = x(hi1)) /x(ho), (2)
where x is the atmospheric depth in unit of (g/cm?) and hj is
the ground-level altitude. In this paper we use the atmospheric
pressure at h; for x(h;) in equation (2).

The correction based on the linear correlation between the
Tvss and muon count rate is the best method for muon detector
data (Mendonsa et al., 2016). In this study, we applied the same
MSS method to the muon detector data at Syowa Station as Kato
etal. (2021) documented. To calculate the Tss, the temperature
data was obtained from GDAS (Global Data Assimilation
System; https://www.ncei.noaa.gov/products/weather-climate-
models/global-data-assimilation) at 925, 850, 700, 600, 500,

400, 300, 250, 200, 150, 100, 70, 50, 30, and 20 hPa. Kato
et al. (2021) reported how the coefficient for MMS is calculated
with the obtained values. The corrections of barometric effects

for both muons and neutrons are also reported by Kato et al.
(2021).

2.2 PARMA-based snow cover correction for neutron
counting rate

The pressure correction is the major atmospheric correction
necessary for the neutron count rate because the lifetime of
neutrons is long and the air-shower production dominantly
depends on the air mass above the detector. It is, however, also
known that the neutron monitor count rate decreases when the
accumulation of snow increases around the detector housing
because of albedo neutrons scattered from the soil moisture or
the snow cover of the surrounding ground area (Schron et al.,
2016; Brall et al., 2021). The snow cover effect is not negligible
for the NM64-type detector used at Syowa Station because the
thickness of the reflector is only 7.5 cm (c.f., 28 cm in the IGY
detector), and the evaporation neutrons produced from the
surrounding material can significantly contribute to the counting
rate with ~5% (Hatton, 1971). This paper discusses the snow
cover effect in the polar region, while Ruffolo et al. (2016)
discussed a similar “water vapor” environmental effect in the
tropical region. Here, we do not anticipate the impact of the
snow accumulation on the roof because the strong wind at
Syowa Station tends to blow the roof snow away in a short time
scale.

Japan Meteorological Agency observes the snow cover
depth at Syowa Station at the Kitano-Ura area, several hundred
meters away from the cosmic ray detector. The actual snow
cover around the neutron monitor can be different depending
on neighbor buildings and ground slopes. Also, the most signif-
icant human activity in snow removal is usually in November or
December, depending on the occurrence of blizzard activities,
while minor removals have been done randomly throughout
the year. Therefore, to estimate the snow cover depth around
the detector, we first use the observed snow cover depth
between February and November and reset the estimated snow
cover depth to be zero at the beginning of February each year.
We then linearly interpolated the snow cover depth between
November and February. Further, we put zero in the data gap
of the snow cover estimation before June 2018, considering
the microgravity observation at that time (Aoyama et al., 2016).

For the snow cover correction, we adopted the PARMA
(PHITS-based Analytical Radiation Model in the Atmosphere)
model (Sato, 2015, 2016) for calculating the neutron count
rates. It can reproduce the influence of the surrounding environ-
ment on the neutron flux as a function of the underground water
density (Sato & Niita, 2006). The calculated neutron fluxes were
converted to the count rates, using the response function of the
NM64-type detector (Sato et al., 2014). In this study, we
assumed the linear relationship between the estimated snow
depth, d, and the underground water density supplied to the
PARMA model, g, as written by g = ¢; + c»d, where ¢; and
¢, are the constant parameters. We fixed the numerical value
of ¢; to be 0.20, commonly used for calculating the neutron
monitor count rate (Sato, 2015). On the other hand, we regarded
¢, as a free parameter determined to minimize the y* value
between the calculated and measured count rates. We can
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Figure 1. (a) The 10-day values of 30-day running averaged Sun’s polar magnetic field, (b) daily mean sunspot number, and (c) daily mean
neutron monitor count rate at Oulu, Finland. The polar magnetic field strength (green dots) started decreasing in late 2019, while the neutron

count rate started decreasing in early 2020.

estimate the snow correction factor from the ratio between neu-
tron count rates calculated by PARMA with and without the
snow cover effect (Appendix C).

Figure 2 shows the observed snow cover depth, the pressure-
corrected relative count rates of the neutron monitor obtained
from the observation, and the results of PARMA with different
¢, parameters. The relative count rates are normalized to their
mean value in February 2019, when there was little snow around
the neutron monitor. It is apparent from Figure 2 that the mea-
sured count rates are anti-correlated with the snow cover depth.
The best-fit value of ¢, to the observation is 0.45 m~ !, with the
maximum coefficient of determination R> = 0.69.

2.3 ESN for muon and neutron counting rates

The Echo State Network (ESN) is a kind of recurrent neural
networks (Jaeger, 2001), known as a novel method that works
with a relatively small set of training data, which is especially
suitable to the analysis of times series. The basic structure of

the ESN model used in this paper is essentially the same as
was used by Kataoka and Nakano (2021). Therefore, only the
essential part is repeated below. The input vector u, reservoir
state vector X, and output vector y are defined by N-points time
series of n =1, 2, 3...N as follows:

uy (n) xy(n) »i(n)

u(n) = =

» x(n) » y(n) =

uny (1) xye(n) Y (n)

(3)
The reservoir state vector x consists of a large number of nodes,

which are updated in time with the input vector u and the
previous state of the nodes as follows:

X(n+1) = f(W™u(n+ 1)+ Wx(n)) (n=0,1,2,...),
(4)

Page 3 of 11



R. Kataoka et al.: J. Space Weather Space Clim. 2022, 12, 37

1 " T " T " T " T
E [( ]
=S ]
o L 1
N M M _
z [ ]
(@]
o - .
wn L i
1 | 1 1
0 2019 2020 2021 2022
1.02 : : . . .
(b) —— Observation
% | ?ll My ! W i | Calculation with ¢, (m'1)
= 1 I.’ ’ i !‘f\” | bij | — o.00 (R® =-0.86)
| LA |
3 AL »’1‘{ 0.10 (K = -0.07)
i ‘ |
£ 098f WUl | 'W "R & 0.20 (R® = 0.36)
5 | W an 0.30 (R® = 0.59)
o |
0.961 ! | — 0.45(8*=0.69)
' — 0.70 (R? = 0.54)
1 | 1 1
2019 2020 2021 2022
Year

Figure 2. Observed snow cover depth (top panel) and the pressure-corrected relative count rates of the neutron monitor as obtained from the
observation and the PARMA calculation with different ¢, parameters (bottom panel).

where we use hyperbolic tangent as the function f and fix the
weight matrices W™ and W. To make the random and sparse
node connections of W, we set the number of nodes, Nx, to
be 103, where only 10% of the matrix elements are random
values between —1.0 and 1.0, and the rest 90% are zero.
We selected the spectral radius (maximum eigenvalue) of W
below unity to satisfy the echo state property that guarantees
the independence of the reservoir state to the initial values
(Jaeger, 2001). In this paper, we optimized the spectral radius
to be 0.95 (Appendix B). The output vector y is calculated by
the linear combination of the output weight matrix and the
reservoir state vector as follows:

yn+1)=w"n+1) n=0,1,2,...), (5)

where W' is the output weight matrix. We train only the
output weight matrix W°"* by the set of 7-point time series
of input vectors X and desired output vectors D:

The least-squares method to minimize the difference between
the outputs y and d can be represented by a standard linear
regression as follows:

wet = px"(xxT) ™ (7)
The temperature data was obtained from GDAS at 925, 850,
700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, and
20 hPa. In the above ESN model (Kataoka & Nakano, 2021),
we use temperature data as the 15-dimensional input vector
(Nu = 15) and count rate as the one-dimensional output vector

(Ny = 1). In this study, about four-year data (from February 1,
2018 to March 31, 2022) are used for machine learning. We
used six-hour averaged values, i.e., a total of 6080 data
points exist in the time axis. The results using 24-hour values
(a total of only 1520 data points) are also shown in Appendix
(Figs. B2 and B3).

Usually, for many machine learning applications, we split
the input dataset into training and testing data sets. In this paper,
however, we used a different approach to demonstrate the pos-
sible method with limited dataset. We simply used the whole
data for training only. The constructed model is then used for
reproducing the training data, and not used for predicting any
testing data. For longer term dataset with somewhat different
purposes, however, it is possible to separate the training and
testing datasets to examine the metrics of the constructed model.
That can be a good future work.

3 Comparison among different correction
methods

We compare the MSS and ESN temperature correction
methods on the muon count rate (Fig. 3). Figure 3b shows the
temperature effects on the muon count rate reproduced by the
two methods. Note that a data gap in muon count rate existed
at the beginning of 2021. Figure 3c shows the corrected count
rates estimated from the ESN and MSS methods. The MMS
corrected muon data is obtained from Kato et al. (2021). It is
apparent that both methods similarly remove the seasonal varia-
tion due to the temperature effect. Similar decreasing trends
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Figure 3. Data-model comparison at Syowa Station. (a) Temperatures at 925, 700, 500, 400, 250, 150, 70, 50, and 20 hPa, (b) muon count rate

in the unit of counts/min, (c) corrected count rate.

of ~2% per year appeared in 2020 and continued in 2021 in
Figure 3c. Although the seasonal variation remains in the
corrected count rates, the start timing of the decreasing trend
roughly corresponds to the solar minimum in late 2019.

There are discrepancies between modeled and measured
data as seen in Figure 3b: Namely, in 2019 both methods pre-
dict lower count rates than observation, while in 2021 and 2022
both methods overestimate the actual muon count rate. This is
an expected result from the initial deterioration of muon detector
over yearly time period. Such a discrepancy can be overcome if
the corrections are calculated for shorter periods. However, in
this study aiming at analyzing the yearly change of the mean
count rate, we simply use the whole data as the first step.

For the snow cover correction of the neutron counts at
Syowa Station, the same ESN method may also work for the
neutron monitor at Syowa Station, because the time variation
of the atmospheric parameters may control the resultant snow
cover around the neutron monitor. However, the chain of phy-
sics and related human activities of snow removal is very
complex.

Figure 4 shows the snow cover corrections applied to the
neutron count rate at Syowa Station, using the PARMA
and ESN models. The snow cover effects reproduced by two

methods are shown in Figure 4b, while Figure 4c shows the cor-
rected count rates (Appendix C). It is apparent that both methods
similarly remove the seasonal variation due to the snow cover.
In Figure 4c, a negative spike in May 2019 is a natural variation
associated with multiple CMEs passing across the Earth. Similar
Forbush decrease events associated with CMEs can be identified
also in November 2021 and March 2022. On the other hand, the
large bipolar variation in December 2020 is associated with the
human activity of snow removal, which is not a natural variation
of primary cosmic rays. Note also that the solar activity was rel-
atively quiet in December 2020.

The decreasing trend starts in the somewhere early half of
2020 in both PARMA and ESN results, which is roughly
consistent with Oulu neutron monitor data (Fig. 1c). We must
monitor the actual snow cover situation around the neutron
monitor in future observations for further detailed snow cover
correction.

Note that the ESN-based correction of the snow-cover effect
on the neutron count rate has a complex meaning. First, the
input temperature data of GDAS correlates with the snow cover,
which can also be confirmed by the ESN method (Appendix D).
The agreement between the modeled and observed snow cover
data is not very high, especially from the beginning of year
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Figure 4. Data-model comparison at Syowa Station. (a) Temperatures at 925, 700, 500, 400, 250, 150, 70, 50, and 20 hPa, identical to
Figure 3a, (b) neutron count rate in the unit of counts/min, (c) corrected count rate.

2020 onward. Therefore, in future work, some additional strong
predictors would be needed as additional input variables, to
increase the reliability of this method and more fully exploit
the advantages of machine learning approach. Second, snow-
drift accumulation effects, blizzard occurrence, and artificial
snow removal activities are also related to the temperature data.
The ESN learned the whole correlations among all of these
natural and artificial effects.

If the snow data is available, we can use the PARMA-based
correction for other similar neutron monitors. If not, we can still
apply the ESN method using meteorological dataset. The results
can then be compared among multi-stations in polar regions to
examine the best possible corrections.

The decreasing trend started earlier in the muon data around
the solar minimum in late 2019, while it started several months
later in the neutron monitor data in early 2020 (see Figs. 3c and
4c). It has been established by observations that the temporal
variation of the GCR intensity lags behind the solar parameters,
such as the sunspot number, the interplanetary magnetic field
magnitude at Earth, the neutral sheet tilt angle and the
open solar magnetic flux (e.g., Cane et al., 1999; Koldobskiy
et al., 2022), partly due to the GCR propagation time in the

heliosphere which is shorter in high energy GCRs than in low
energy GCRs. Recent numerical study demonstrated that the
propagation time also depends on particles’ charge and the drift
cycle (Strauss et al., 2012). However, the calculated propagation
time is below 10 days for 10 GeV protons, much shorter than
the lag seen in Figures 3 and 4.

By analyzing the long-term variations of neutron and muon
count rates, Nagashima and Morishita (1980) reported that the
time lag of GCR intensity variation behind the sunspot number
is as long as 10 months and is systematically longer in odd solar
activity cycles, including A > 0 to A < O transition of the solar
polar magnetic field polarity than in even cycles including A <0
to A > 0 transitions. Such long time lag and its 22-year variation
are both verified by a recent work (Koldobskiy et al., 2022). The
present paper documented an example only in A > 0 solar min-
imum. We have to examine the modulation in the A < 0 period
and in different solar activity phases to investigate the energy-
dependent solar modulation in more detail. As a future work,
we can better address the hysteresis effects and the energy-
dependent solar modulation by carefully applying similar
correction methods as developed in this study to long-term data
of both neutron monitors and muon detectors.
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4 Conclusions

We proposed a new snow cover correction method for the
neutron count rate using the PARMA model. We then showed
that the ESN model combined with the GDAS temperature time
series could be useful for the snow cover correction of neutrons
and the temperature correction for muons, showing the reason-
able agreement among different correction methods. From the
comparisons of the corrected count rates, we conclude that
muons likely started to decrease at least a few months earlier
(late 2019) than neutrons (early 2020) following the onset of
25th 11-year solar cycle in 2019, which can be interpreted by
a standard understanding of the energy-dependent intrusion of
cosmic ray protons.
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Appendix A

Response function and primary median energy

We calculate the response function for the Syowa neutron
monitor using the method given by Nagashima et al. (1989).
For the muon detector, for the vertical incident direction, we
used the interpolation values from the table of the response
function calculated by Murakami et al. (1979). We define the
median primary rigidities as the rigidity at which the normalized
integral response function equals 0.5.
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Figure Al. (a) Differential and (b) integral response functions of the muon detector (solid blue circles) and neutron monitor (solid orange
diamonds) at Syowa Station. Differential integral response functions are normalized.
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Figure B1. Root mean square errors between observed and modeled muon count rate (left) and neutron count rate (right), changing the spectral
radius of the Echo State Network. We set the number of nodes to be 10%. Selected temporal resolutions are 6 h (N = 6080) and 24 h (N = 1520).
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Figure B2. Same as Figure 3 except for the time resolution, using 24 h values (N = 1520).

Appendix B

Hyperparameter survey for echo-state network
and the time resolution dependence

Root mean square error between the observation and model
decreases as the spectral radius is greater for both muon model-
ing (left panel of Fig. B1) and neutron modeling (right panel of
Fig. B1). To guarantee the echo state property, we selected the
spectral radius of 0.95 (below unity). The examples using differ-
ent time resolution of 24 h (less data points) are shown in
Figures B2 and B3.

Appendix C

Corrected count rate and correction factor

The corrected count rate I, and correction factor A, can
be defined as follows:

Icorr = lobsAcot‘ra
A _ I base
corr — ;
I actual
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the model-estimated count rates for the base and actual - WAP’

conditions, respectively. For the snow cover correction using . .

PARMA, I, and Lo were calculated by setting g = 0.2 where AP is the. difference b;tween thf? actpal and base
and 0.2 + 0.45d, respectively. As another example, for the  Pressures, and f is the correlation coefficient in the unit of
standard pressure correction of neutron count rate, A.o, can [%e/hPa].

be described as follows:

where I, is the observed count rate, I, and I, . are R In (1 actual B
model —
Ibase

Acorr = eXp (_Rmodel)7
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Figure D1. (a) Input vectors of GDAS temperatures at 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, and 20 hPa and (b)
output vector of the snow cover depth with the ESN result (red). Black curve is the observed snow cover in Figure 2a.

Appendix D estimated snow cover data. The input data is the same GDAS
temperature time series used in the main contents. The
basic seasonal variation of the estimated snow cover is reason-

ably reproduced, although the disagreement is considerable in
2021.

Example of the ESN model to reproduce the snow
cover

To test the ability of the ESN model to reproduce the snow
cover, we replace the output vector of the ESN model with the

Cite this article as: Kataoka R, Sato T, Kato C, Kadokura A, Kozai M, et al. 2022. Local environmental effects on cosmic ray observations
at Syowa Station in the Antarcticc PARMA-based snow cover correction for neutrons and machine learning approach for neutrons and
muons. J. Space Weather Space Clim. 12, 37. https://doi.org/10.1051/swsc/2022033.
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