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Abstract A ground level enhancement event occurred on 10-11 September 2017, associated with an X8.2
solar flare on the western limb of the Sun. We report the results of our manually conducted nowcast using
WArning System for AVlation Exposure to Solar energetic particles. The maximum radiation dose rate at a
flight altitude of 12 km was estimated to be approximately 3 uSv/h, which is less than half of the dose rate
due to galactic cosmic rays. We also discuss a possible quasi-parallel shock-acceleration mechanism that may
have led to the exceptionally soft proton energy spectrum as ground level enhancement events.

1. Introduction

A ground level enhancement (GLE) event occurred at 1630 UT on 10 September 2017, associated with an X8.2
solar flare on the western limb of the Sun. The GLE event was the 72nd since the first detected GLE event,
which was observed in 1942 by Forbush (1946). One of the most notable characteristics of this event was that
the associated coronal mass ejection (CME) had an extremely high speed of approximately 3,400 km/s,
corresponding to almost a one-in-one-hundred-years event (Gopalswamy, 2018).

Predicting intense solar energetic particle (SEP) events such as GLE events is challenging and one of the most
important aspects of space weather research (Kataoka et al, 2011). We have recently developed a
physics-based framework called WASAVIES (WArning System for AVlation Exposure to Solar energetic
particles) to nowcast and forecast the development of a GLE and the corresponding radiation dose, as
described in a series of papers (Kataoka et al., 2014; Kubo et al.,, 2015; Miyake et al., 2017; Sato et al., 2014).
The detailed calculation algorithm of the latest version of the automated WASAVIES system and its
verification are reported in a companion paper (Sato, Kataoka, et al., 2018, S18 hereafter).

Ground level enhancement 72 offered a surprising opportunity for us to improve our capabilities in
nowcasting and forecasting the development of GLEs. We applied the WASAVIES to nowcast and
quantitatively estimate the possible radiation dose during the GLE 72 event at flight altitude. The purpose
of this paper is to present the basic characteristics of the GLE 72 event obtained from this analysis and to
identify possible problems that may be encountered in future operations.

2. Calculation Procedures

The basic concept of the calculation procedures used in this study was essentially the same as that of the
original WASAVIES framework (Kataoka et al., 2014) and is briefly introduced as follows. First, we prepared
simulated data sets of time profiles of proton spectra for arbitrary pitch angles as obtained by solving 1-D
focused transport equations, varying the time profiles of the initial proton spectrum as controlled by fast,
medium, and slow “IPs” and the power-law spectral index, among other parameters (Kubo et al.,, 2015).
Second, these data sets were combined with an antiproton trace model in the magnetosphere to derive
the proton flux at the top of atmosphere anywhere in the world (Miyake et al., 2017). Finally, the fluxes of
protons and their secondary particles as well as the associated radiation doses in the atmosphere were
calculated from the top-of-atmosphere proton flux using an air shower simulation database developed with
the Particle and Heavy lon Transport code System (Sato, lIwamoto, et al., 2018).

In this study, we applied the latest version of WASAVIES, in which we dynamically search for the best fit values
of the injection parameter (IP) and the power-law spectral index y of the injected protons as well as the tilt
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angle 0; and the normalization factor Ny of the SEP flux. The best fit parameters were determined to minimize
the errors with respect to the observed proton fluxes at >100 MeV as measured by the GOES satellites in geo-
synchronous orbit as well as the observed count rates at 13 selected neutron monitors on the ground. These
data were automatically downloaded from the National Oceanic and Atmospheric Administration and
Neutron Monitor Database websites at intervals of 5 min for the real-time operation of the automated
WASAVIES system. More technical details of the automated WASAVIES system are described in a companion
paper (S18).

Among the four free parameters, only the tilt angle 8, has been newly added in comparison with the original
WASAVIES framework to account for the possibility of a large north-south asymmetry of the dose rate, as was
seen in GLE 69 (Matthia et al.,, 2009). However, since the introduction of the tilt angle is not important in the
particular case of GLE 72, we omit any further explanation of the technical details of the automated
WASAVIES system here and leave this description to a separate companion paper (518).

As shown above, the key components of WASAVIES can be summarized as the physics-based transport
model of energetic protons from the Sun to the Earth and the air-shower simulation against to the energetic
protons. Major assumptions are power-law distribution of the initially injected protons of 0.1-10 GeV and 1-D
stochastic transport along the static Parker spiral. Several input parameters including the spectral index of
injected protons are needed to run the transport model, and several output data including the dose rate
at flight altitude or neutron counts at ground are obtained from the air-shower simulation.

3. Results

Figure 1 shows the count rates measured by several neutron monitors during the GLE 72 event and compares
them with our calculated data as obtained from WASAVIES. The fluctuations observed in the calculated lines
arise from the discrete selections of the best fit parameters. Nevertheless, reasonable agreement can be seen
between our model and the observations. For example, the obtained results are consistent with the fact that
the increase in the count rates reached only up to approximately 5% at the South Pole, while a significant
signal was almost undetectable at Newark.

Figure 2 shows the proton flux at >100 MeV as measured by the GOES 13 satellite in geosynchronous orbit.
Our calculated data obtained by varying the power-law spectral index y from 4.5 to 7.0 are also shown. The
other parameters were set to their best fit values. It is found that the best fit values of y during the increasing
and decreasing phases of the event are approximately 6.0 and 7.0, respectively, both of which are exception-
ally high, as the typical value of the spectral index vy is 5.0 (e.g., Duggal, 1979). A higher v, that is, a softer pro-
ton spectrum, results in a lesser impact at the ground level even when the proton fluxes in geosynchronous
orbit are very high, as discussed by Kataoka et al. (2015).

Figure 3 shows the calculated effective dose rates due to SEP exposure at various altitudes. The dose rates
due to galactic cosmic rays (GCRs), as calculated with the Particle and Heavy lon Transport code System-
based analytical radiation model PARMA, version 4 (Sato, 2015), are also shown. The highest dose rates
among the 432 locations (18 latitudes x 24 longitudes) are plotted in the graph to present the most
conservative radiation dose estimates. It is evident that the SEP dose rates were generally lower than the
corresponding GCR dose rates during the GLE 72 event, except at the altitude of 20 km. For example, the
maximum SEP dose rate at a conventional flight altitude of 12 km was estimated to be approximately
3 uSv/h, which is less than half of the corresponding GCR dose rate.

The total SEP dose delivered to aircrews as estimated under the most conservative scenario, that is, remaining
at the highest-dose locations at 12 km for the entire duration of GLE, is approximately 36 uSv, which is only
one third of the GCR dose (~0.1 mSv) received during the round trip between Tokyo and New York. It is also
confirmed that the SEP dose dramatically increased with increasing altitude in comparison to the GCR dose.
The total SEP dose at 20 km for the entire duration of GLE 72 was 0.91 mSv at maximum, which is 25 times
higher than the corresponding value at 12 km.

One of the most impressive improvements in the automated WASAVIES system is the real-time display of the
spatial distribution of the radiation dose rate across the world. Figure 4 shows an example snapshot of the
global map of the SEP radiation dose during GLE 72.
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Figure 1. Measured count rates (circles) at the neutron monitors at Thule (76.5°N, 68.7°W), Oulu (65.05°N, 25.47°E), Inuvik
(68.36°N, 133.72°W), Newark (39.68°N, 75.75°W), and South Pole (90.0°S) during GLE 72, compared against our calculated
data (red lines).
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Figure 2. Proton flux at >100 MeV as measured by the GOES satellites (circles), compared against our calculated data
(dashed curves) obtained by varying the power-law spectral index y of the injected protons from 4.5 to 7.0.
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Figure 3. Highest effective dose rates among the 432 locations at various altitudes due to solar energetic particle exposure
(solid curves) and galactic cosmic ray exposure (dashed lines).

4, Discussion

Figure 5 shows that the relatively long-duration time profile of the GLE 72 event can be mostly fitted with
slow IP, as expected; this is a typical feature of a limb event, as previously discussed by Kataoka et al.
(2014). It is again found from Figure 5 that the value of the spectral index y lies mostly between 6 and
7, which is exceptionally high for GLEs. Based on this result, we conclude that the GLE 72 event is excep-
tionally soft as GLE events, comparing with many other GLE events (see S18), although it has been
reported that the GLE 72 event was one of the hardest SEP events during the weak solar cycle 24
(Schwadron et al,, 2018).

To understand the realistic situation in the space environment, it is useful to examine the results from a
dynamic three-dimensional magnetohydrodynamic simulation of the inner heliosphere, which includes both
realistic background solar wind structures and CMEs. Figure 6 shows the solar wind speed distribution on the
ecliptic plane as reproduced by the SUSANOO-CME model (Shiota & Kataoka, 2016), in which multiple mag-
netized CMEs can be launched. The extremely high-speed CME was launched toward the west, as observed.
However, the entire extent of the CME was sufficiently large to be a halo-type CME, as was observed from the
Earth (Figure 7), which is roughly consistent with the overall results from the SUSANOO-CME model. It is note-
worthy that Schwadron et al. (2018) also obtained similar results of the disturbance in the inner heliosphere
using a different CME model.
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Figure 4. Global map of the calculated effective dose rates due to solar energetic particles at a 12-km altitude at 18:00 UT
on 10 September 2017.
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Figure 5. Best fit parameters from WArning System for AVlation Exposure to Solar energetic particles for reproducing the
observed data from neutron monitors and GOES satellites during the GLE 72 event. (top to bottom) The injection para-
meter, the power-law spectral index y of the initial protons, the incident tilt angle 6;, and the normalization factor Ny of the
solar energetic particle flux.

Figure 7 shows differential images of the observed halo CME. The deformation of the 360° halo-type
structure, especially on the east side of the Sun, is associated with a neutral sheet of slow and dense plasma,
in which the speed of the CME is relatively reduced. Such deceleration and deformation of CMEs have been
theoretically predicted in other studies (Odstrcil & Pizzo, 1999; Riley et al., 1997). It is also found from the
SUSANOO-CME model (Figure 6) that the flank side of the extremely fast CME was deformed against the slow
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Figure 6. The solar wind structures on the ecliptic plane as reproduced by the SUSANOO coronal mass ejection (CME)
model. The colors indicate the solar wind speed, and the arrows indicate the directions of the interplanetary magnetic
field. Neutral lines are also represented by white dashed curves. During the GLE 72 event, the Earth was predominantly
connected to the deformed flank side of the extremely fast CME via a radially aligned interplanetary magnetic field.
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Figure 7. Differential images observed by the SOHO/LASCO C3 coronagraph. The time evolution of the rapidly increasing
flux of energetic protons can also be recognized from the damage of proton trajectories.

and dense plasma around the neutral line. Furthermore, it is found that preceding CMEs gave rise to a some-
what radially aligned interplanetary magnetic field structure upstream of the Earth. The relatively small-scale
shock wave therefore faced more directly toward the Earth, allowing it to accelerate and propagate the SEPs
along the approximately radial interplanetary magnetic field.

The reduced speed of the small-scale shock wave was still high (above 1,000 km/s), and the CME-driven shock
was likely strong enough to rapidly create GeV particles. In fact, Gopalswamy et al. (2012) showed that all of
GLEs during solar cycle 23 had associated CME speed of >1,000 km/s. Although the power-law index from
standard diffusive acceleration theory (Bell, 1978; Blandford & Ostriker, 1978) depends only on the compres-
sion ratio, it is possible that the actual energy spectrum of a shock-accelerated spectrum from 0.1 to 10 GeV
range depends on the shock angle, which is defined as the angle between the shock normal and the inter-
planetary magnetic field. This is because the acceleration of quasi-perpendicular shocks is rapid, giving them
a distinct advantage in producing high-energy particles (e.g., Giacalone et al., 1994; Jokipii, 1987; Zank et al.,
2004). Also, considering Ellison-Ramaty type (Ellison & Ramaty, 1985) power-law spectra with a exponential
cut-off at high energy, the magnetic geometry can have an effect of about one order of magnitude on the
cut-off energy (Sandroos & Vainio, 2009). The cut-off energy should also depend on the size of shocks. The
small-scale shock wave had a mostly small shock angle; that is, the shock was quasi-parallel during
the GLE event, as shown in Figure 6. The exceptionally soft spectrum of GLE 72 can therefore be consistent
with the special situation of the deformed CME.

Multiple CMEs arrived at to the Earth before the GLE 72 event, and a major Forbush decrease event occurred
before and during GLE 72. The Forbush event was in the recovery stage when the GLE 72 event occurred. The
background GCR dose rate was therefore different from the typical rate on quiet days, which can pose a pro-
blem for the correct real-time evaluation of the pure contribution due to the GLE. It is therefore important to
regularly obtain well-determined background GCR level. In the current WASAVIES system, the average back-
ground count rate for 10-85 min before the detection of the GLE is automatically used to fit the increasing
count rates of the neutron monitors; consequently, the background count rates that were subtracted to eval-
uate the increasing count rates during the GLE 72 event were 2-4% smaller than usual due to the Forbush
decrease. The question of how to automatically assess the background level in real time during Forbush
events will be addressed in future work.

In summary, it is important to obtain an overview and the time-dependent hitory of the solar wind structures
in the inner heliosphere with the help of three-dimensional magnetohydrodynamic simulations to under-
stand the possibly complex situations that may lead to unexpected features of GLEs. Nevertheless, it has also
been demonstrated in this study that WASAVIES is a useful tool for the space weather nowcasting of GLEs. For
example, WASAVIES was capable of quantitatively estimating the SEP radiation dose and identifying the
exceptionally soft spectrum of GLE 72 in real time. We believe that this study provides a good example of
such bidirectional research-to-operation and operation-to-research development for space weather research
and operations.
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