宇宙線と雲形成

- フォーブッシュ現象で雲は減るか? -

片岡龍峰*

Cosmic Rays and Cloud Formation: Does Cloud Amount Decrease during Forbush Decreases?

Ryuho KATAOKA*

Abstract

Possible influences of cosmic rays on terrestrial climate have been studied by many researchers since a good correlation between neutron monitor counts and global cloud amount was reported by Svensmark and Friis-Christensen in 1997. The cosmic ray-cloud relationship may be best tested during Forbush decrease events, in which cosmic rays largely decrease for several days associated with coronal mass ejections. Some cloud parameters are likely to respond to the transient decrease of cosmic rays with a typical time delay of several days, although we do not know the physics behind the cosmic-ray cloud relationship.

Key words: Forbush decrease, galactic cosmic rays, cloud formation キーワード:フォーブッシュ現象,銀河宇宙線,雲形成

I. 宇宙線雲仮説

地球に降り注ぐ宇宙線が増えると雲が増えるの ではないか、というのがいわゆる「宇宙線雲仮 説」である。相関関係はあるが、因果関係やメカ ニズムは、まだはっきりとわかっていない。宇宙 線雲仮説が正しいとすると大変なことになる。と いうのも、地球の気候変動が、雲を介して宇宙放 射線環境という外的要因に敏感に応答する系とい うことになると、人為起源の地球温暖化問題も含 めて、これまで主に内的要因で説明してきたさま ざまな時間スケールでの地球気候変動メカニズム の常識の多くが覆されることになるからである。 そして非常に興味深いことに、宇宙線が増えるこ とで雲が増え、結果として放射バランスで地球が 寒冷化する、という単純明快な筋書きは、数日か ら数億年という,あらゆる時間スケールで成立し ている見込みがある (Svensmark, 2007)。本稿 では,この宇宙線雲仮説に関連し近年注目を集め ている論文について,著者が独自に解析した結果 も含めてレビューする。

地球に到来している宇宙線の大部分は,天の 川銀河内の超新星残骸から発生している高エネ ルギーの荷電粒子であり,銀河宇宙線(GCR: galactic cosmic ray)と呼ばれている。宇宙線は 大気中で複雑に相互作用してエネルギーを失うこ とで大気を常に電離させている。この大気電離が 雲形成を促進するように影響することが基本的な メカニズムとして第一に予想される。この大気電 離は,空気シャワーと呼ばれるよく知られた現象 であり,宇宙線フラックスを測定する地上の中性 子検出器では,この空気シャワーでできた中性子

* Interactive Research Center of Science, Graduate School of Science and Engineering, Tokyo Institute of Technology

^{*} 東京工業大学大学院理工学研究科理学研究流動機構

図 1 (a) 太陽黒点数, (b) 太陽風磁場強度, (c) 宇宙線フラックス, (d) 全球平均低層雲量の太陽周期変化.

 $\label{eq:Fig.1} Fig. 1 \quad \mbox{Long-term variations of (a) sun spot number, (b) magnetic field of the solar wind at the Earth, (c) neutron monitor (NM) counts at Oulu, and (d) low cloud amount.$

が地上に落ちた数をカウントしている。

Svensmark and Friis-Christensen (1997) lt, 宇宙線フラックスの太陽周期変化と、海上雲量の 全球平均値の年々変化の間によい正相関があるこ とを見いだし,宇宙線雲仮説を提唱した。数年 後, Marsh and Svensmark (2000) は、宇宙線 フラックスと相関をもって変化するのは、高度 3kmよりも低い雲、低層雲であることを見いだ した。それから約10年が過ぎた。図1に、宇宙 線フラックスと低層雲量の月平均値を示す。黒点 数で定義される太陽 11 年周期(図 1a)で変動す る太陽風磁場(図1b)と、その太陽風磁場によっ て侵入を妨げられている宇宙線フラックス(図 1c)との逆相関は明らかで、その基本的なメカニ ズムも明解である。つまり、太陽が活動的になり 太陽風磁場が平均的に強まることで、荷電粒子で ある銀河宇宙線は地球に到達しにくくなる。例え ば,太陽活動極大期では,やや意外なことに,銀 河宇宙線による被ばく量が比較的和らげられるの

である。ただし、次章で詳しく述べるとおり、太陽活動極大期には、太陽からの宇宙線が突発的に 急増することもあるため、実際の被ばく量に関し てはトータルで判断する必要がある。

雲は基本的に夏の陸地の上昇気流で多く発生す るため、低層雲量の長期変化(図1d)には、南 北半球の陸地面積の非対称による季節変化が数% の振幅で顕著に現れる。年々変動としてそのトレ ンドを辿ると、2000年頃までは宇宙線フラック ス(図1c)と低層雲量(図1d)との間に正の相 関が見てとれる。しかしながら、2000年以降の 低層雲量のプロファイルには単に減少傾向が目立 ち、宇宙線フラックスとの相関関係は見てとれな いため、少なくとも低層雲量が長期的に減少して いる要因が別にあることがわかる。

II. フォーブッシュ現象

地球に到来する宇宙線フラックスが,ある日 急激に減少し,数日かけて徐々に回復することが

図 2 2006 年 12 月の磁気嵐直前の太陽風スピードの分布. 白いベール状に表した太陽風電流シートの形状や, フレアに伴って太陽を飛び出しているコロナガス質量噴出が地球にやって来る様子の再現図 (Kataoka *et al.*, 2009).

Fig. 2 Solar wind speed distribution just before the December 2006 geomagnetic storm. Heliospheric current sheet is described as a white curtain. A coronal mass ejection was associated with a solar flare, and arrived at the Earth (Kataoka *et al.*, 2009).

ある。この現象は 1937 年にスコット・フォー ブッシュによって発見され, Forbush decrease と呼ばれている。decrease は減少を意味するが, フォーブッシュ減少現象などと言いたいときに日 本語として語呂が大変に悪いため,本稿では単に フォーブッシュ現象と呼ぶことにする。物理的に は,太陽フレアに伴って発生するコロナ質量放出 の強い磁場が一時的に宇宙線バリアとなる現象で ある。

太陽コロナからは、太陽風と呼ばれる磁化した プラズマが超音速で準定常的に噴出しており、図 1に示したように太陽風磁場がバリアとなって宇 宙線から地球を守る役割を担っている。ところ が、大規模な太陽フレアが発生すると事態は大き く変化する。太陽フレアに伴うコロナ質量放出 (CME: Coronal Mass Ejection)で引きちぎられ た太陽コロナの強い磁場は、周りの遅い太陽風に 追いつくことで衝撃波を形成し、地球周辺の宇宙 空間を秒速 1000 km を超える猛スピードで通過 していくことがある。図2は、2006 年 12 月に 発生した最大規模のフレアに伴う CME の再現図 である (Kataoka *et al.*, 2009)。CME に伴う強 い磁場は宇宙線から地球を守る新たなバリアとな り、地球に降り注ぐ宇宙線フラックスを約1週 間も減少させ、地上の中性子検出器では通常の1 割程度もカウントが減ることがある。これが フォーブッシュ現象の基本的な物理メカニズムで ある。

CMEの影響は何もよいことばかりではない。 例えば CME の強い磁場は地磁気と反応して磁気 嵐を発生させてしまう。磁気嵐では、単に地磁気 が全体的に数%弱くなるのみならず、オーロラに 伴う大量の電磁エネルギーが極域の熱圏に与えら れるとともに、普段は極域にしか入り込まない宇 宙線が中緯度にも入り込むことになる。つまり、 人工衛星もその影響を受けて障害を発生しやすく なり、航空機パイロットや宇宙飛行士も被ばくし やすくなるのである。さらに複雑なことに、最も 強力な太陽フレアと CME 衝撃波は、非常に効率 のよい天然の粒子加速器であり、自ら宇宙線(こ こでは、10億エレクトロンボルト程度の高エネ ルギー陽子)をつくりだすこともできるため、太 陽フレア・CME 衝撃波に関連した高エネルギー 宇宙線が数時間ほど地球に降りかかってくること がある。この現象は地上の中性子検出器でもまれ に観測されることがあり、GLE (Ground Level Enhancement) と呼ばれている。

フォーブッシュ現象で宇宙線フラックスが急減

Fig. 3 NM counts (top) and low cloud amount (bottom) during Forbush decrease in June 1991.

した場合、雲量も呼応して減少するだろうか? 図3に一例として示したのは、最大級のフレア が連続的に発生した1991年6月の宇宙線フラッ クスの1時間値と低層雲量の3時間値である。 図3は、図1cで宇宙線フラックスが最も低いレ ベルを示したデータ1点を最大限に拡大した図 であり、図1と改めて見比べてみると、何か時 間的に階層的な変化をしているようにもみえる。 というのも, 雲は基本的に大陸上の午後の上昇気 流で多く発生するため,太平洋が夜になる世界時 12時付近にピークをもつ数%の日変化が顕著に 現れるからである。6月13日に宇宙線フラック スが観測史上最も低いレベルになり、その後1週 間ほどかけて宇宙線フラックスレベルが徐々に回 復しているが、これが典型的なフォーブッシュ現 象のプロファイルである。6月15日に見られる 鋭いスパイクは、太陽フレアと CME に伴って発 生した GLE である。このように、フォーブッ シュ現象に GLE が上乗せされてしまうと、雲応 答を調べることが一段と困難になってしまうた め、本稿でレビューする論文では、こういった複 雑なイベントを統計解析の際に極力避ける工夫を している。

図3の日々変化のトレンドを辿ると、この二 つの時系列には相関関係がうっすらと見てとれ る。実際、図3の日平均値30点の相関を求める と、図4に示すように相関係数は0.6となる。も

Fig. 4 Correlation plot between daily-averaged NM counts and low cloud amount in June 1991.

ちろん,この一例のみでは,偶然の結果として相 関がでたという可能性は否定できない。ただし, フォーブッシュ現象の発生頻度は1年に数回程 度であり,ごくまれにしか起こらない。しかしな がら,長期の観測データを振り返ることができる 今だからこそ,フォーブッシュ現象のイベント数 を稼ぐことで,雲変動の平均プロファイルをかろ うじてつくることができる。次章では,複数の フォーブッシュ現象における雲パラメタ変動の, 最新の研究結果 (Svensmark *et al.*, 2009) につ いて紹介する。

図 5 フォーブッシュ現象前後における雲パラメタの平均プロファイル. 左からそれぞれ, (a) エアロゾル, (b) 雲間水量, (c) 水雲の割合, (d) 低層雲量 (after Svensmark *et al.*, 2009).

Fig. 5 Average profiles of cloud parameters superimposed at top-five Forbush decrease events. From left to right, shown are (a) aerosol, (b) cloud water content, (c) liquid water path, and (d) low cloud amount (after Svensmark *et al.*, 2009).

III. 雲変動の平均プロファイル

Svensmark *et al*. (2009) は、フォーブッシュ 現象に伴う宇宙線フラックスの減少によって、大 気電離が最も弱まった歴史的な巨大イベント5例 に関して、その前後数週間における、エアロゾ ル, 雲間水量, 水雲の割合, 低層雲量の平均プロ ファイルを導出した(図5)。この4つの雲パラ メタは、それぞれ異なる観測システムによるデー タであるが、どれも似たプロファイルを示してい る。破線で示された宇宙線量の平均プロファイル と比べると、フォーブッシュ現象がピークを迎え て約7日後,水量と水雲の割合が最も減少し,低 層雲量が最も減る、という関係性が見てとれる。 大気電離が弱まることによりエアロゾル形成が進 まず、水量が減り雲量も減るという過程で、約7 日間の時間差も物理メカニズムとして許容範囲で あると Svensmark et al. (2009) は考察している。

図6は、宇宙線による大気電離度の減少割合 を横軸にとり、(a)水量、(b)水雲の割合、(c) 低層雲量、(d) エアロゾル量を縦軸にとること で、全フォーブッシュ現象における雲パラメタの 大気電離度依存性を示している。宇宙線による大 気電離が弱くなるにつれて、これらすべての雲パ ラメタが減少する傾向がある。過去の解析では、 このような傾向がはっきりでたことはなく、これ はフォーブッシュ現象の規模を大気電離度で分類 したことによって、はじめて明らかになった関係 性である。

IV. 考 察

フォーブッシュ現象のときに雲が減るか減らな いか自体が大きな論争になっている。Sloan and Wolfendale (2008)は、全球平均低層雲量の「月 平均値」を主に用いて、図 6c のような図を作成 し、フォーブッシュ現象の規模と低層雲の減少量 に相関関係はないと結論した。しかしながら、図 1 と図 3 に見られるように、月平均値を用いてし まっては、日変化が基本であるフォーブッシュ現 象のプロファイルが平滑化されてしまうため、実 際に相関関係があっても、相関関係が見えなく なってしまう恐れがある。

関連する雲形成の物理過程についても疑問が 投げかけられている。Kristjánsson et al. (2008) は, MODISという人工衛星による,最高精度の 雲パラメタ観測データを用いて,2000年以降の

表 1 宇宙線の大気電離による CCN 生成から予想される GCR と雲パラメタの関係性 Kristjánsson *et al.* (2008).

Table 1 Relationships between GCR flux and the cloud properties that would be expected if GCR were to influence clouds through a mechanism involving ionization and CCN production Kristjánsson *et al.* (2008).

GCR と CER の負相関	エアロゾル増加 → CCN 増加 → 雲水滴数増加 → CER 減少
GCR と LCA の正相関	雲水滴数増加と CER 減少 → 降水量減少 → 雲面積増加
GCR と HCA の負相関	エアロゾル増加 → 氷核・氷数増加 → 降水量増加
GCR と COD の正相関	雲水滴サイズ減少 → COD 増大
GCR と LWP の正相関	降水量減少→LWP 増大

22 個のフォーブッシュ現象前後の雲パラメタの 平均プロファイルを導出した。また, Kristjánsson et al. (2008) は,全球平均値を用いるので はなく,南半球の海上を複数の小区間にわけて雲 パラメタの空間平均を行った。その結果,いくつ かの小区間では宇宙線フラックスと雲量の,それ ぞれの平均プロファイルの間に有意な相関関係が あるものの,基本的な物理メカニズムとして有力 視されている,大気電離で発生するイオンによる エアロゾル形成促進を介した雲凝結核 (CCN) 形成理論 (例えば, Yu and Turko, 2001; Yu, 2002; Kazil *et al.*, 2006) から予想される表1のような 関係性は,必ずしも満たしていないことを示し た。ここで,雲パラメタである CER (Cloud Droplet Effective Radius), LCA (Low Cloud Amount), HCA (High Cloud Amount), COD (Cloud Optical Depth), LWP (Cloud Liquid Water Path) は, MODIS による観測量である。 実際, Pierce and Adams (2009) による定量的 なシミュレーション結果によると, こういったイ オン・エアロゾル形成促進を介した CCN 形成に よる雲量変化では, 観測されている雲量変化の 2 桁ほど小さい量しか説明できないことを結論して いる。

ほかにも、さまざまな視点から再検証を試みる 研究が行われている。高層雲がでている場合に は,低層雲が見えなくなるという人工衛星観測特 有の見かけの影響を,なんらかの方法で定量的に 評価することは重要視されている (Palle, 2005: Usoskin et al., 2006)。最後に、平均プロファイ ルを得る上での基本的な問題点として, MODIS のデータは2000年以降に限られるため、連発性の CME に伴う非常に複雑なプロファイルのフォー ブッシュ現象も, Kristjánsson et al. (2008)の とり上げた22イベントの中に多く含まれており、 やはり実際に相関関係があっても、相関関係が見 えなくなってしまう可能性があるという問題点が 内在している。そこで著者は、規模の大きい孤立 したフォーブッシュ現象のみを用いて前後約1週 間の低層雲量の平均プロファイルを独自に解析し たが, III 章で示した Svensmark et al. (2009) とコンシステントな結果となったため、本稿では 省略する (Kataoka and Ebisuzaki, submitted)。

V. おわりに

宇宙線と雲の相関関係は見られるが、内在する 基本的なメカニズムは明らかではない。最も有力 視されていた表1に代表されるような CCN 形成 理論の旗色は悪くなってきたが、宇宙線と雲変動 をつなぐ基本メカニズムの候補はほかにも、Tinsley (2008)の提唱するグローバル・サーキット に関連するメカニズムなど、複数提案されてお り、引き続き今後の定量的な検証が期待されてい る (Carslaw, 2009)。現在、太陽極小期が極端に 長引いている。2008 ~ 2009 年は人工衛星観測 史上,太陽風の密度,圧力,磁場のすべてが最も 低い年であり、その結果、宇宙線フラックスも観 測至上最大の値を示しつつある (Heber et al., 2009)。宇宙線雲仮説の検証に関して、この異常 に弱い太陽活動と異常に強い宇宙放射線環境をう まく活かした研究が期待される一方で、フォー ブッシュ現象における雲変動をより正確に見極め るためにも、次の太陽活動周期でサンプル数が倍 増するよう、大規模な太陽フレアと GLE が多数 発生することを祈っている。また、単にフォー ブッシュ現象サンプルの量的な増加による短い時 間スケールの理解の進展に期待するのみならず, フォーブッシュ現象と比べると桁違いに変動量の 大きい数億から数十億年スケールの宇宙線フラッ クス、地磁気、地球環境の復元からも質的に新し いデータがもたらされることによって、宇宙地球 関係の理解モデルが一段ロバストになると期待す る。

謝 辞

オウルの宇宙線中性子モニターデータは、名古屋 大学 WDCCR から取得しました。ISCCP データは、 NASA のラングレー研究センターの大気科学データセ ンターから取得しました。ここに感謝します。

文 献

- Carslaw, K. (2009) : Cosmic rays, clouds, and climate. Nature, 460, 332-333.
- Heber, B., Kopp, A., Gieseler, J., Müller-Mellin, R., Fichtner, H., Scherer, K., Potgieter, M.S. and Ferreira, S.E.S. (2009): Modulation of galactic cosmic ray protons and electrons during an unusual solar minimum. Astrophysical Journal, 699, 1956–1963.
- Kataoka, R., Ebisuzaki, T., Kusano, K., Shiota, D., Inoue, S., Yamamoto, T. and Tokumaru, M. (2009): Three-dimensional magnetohydrodynamic (MHD) modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. *Journal of Geophysical Research*, **114**, A10102, doi:10.1029:2009JA014167.
- Kazil, J., Lovejoy, E.R., Barth, M.C. and O'Brien, K. (2006): Aerosol nucleation over oceans and the role of galactic cosmic rays. *Atmospheric Chemistry* and Physics, 6, 4905-4924.
- Kristjánsson, J.E., Stjern, C.W., Stordal, F., Fjæraa, A.M., Myhre, G. and Jónasson, K. (2008): Cosmic rays, cloud condensation nuclei and clouds—A reassessment using MODIS data. Atmospheric Chem-

istry and Physics, 8, 7373-7387.

- Marsh, N.D. and Svensmark, H. (2000): Low cloud properties influenced by cosmic rays. *Physical Re*view Letters, 85, 5004–5007.
- Palle, E. (2005): Possible satellite perspective effects on the reported correlations between solar activity and clouds. *Geophysical Research Letters*, **32**, L03802, doi:10.1029/2004GL021167.
- Pierce, J.R. and Adams, P.J. (2009): Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates. *Geophysical Research Letters*, **36**, L09820, doi:10.1029/2009GL037946.
- Sloan, T. and Wolfendale, W. (2008): Testing the proposed causal link between cosmic rays and cloud cover. *Environmental Research Letters*, **3**, 024001, doi:10.1088/1748-9326/3/2/024001.
- Svensmark, H. (2007): Cosmoclimatology: A new theory emerges. Astronomy and Geophysics, 48, 1.18-1.24.
- Svensmark, H. and Friis-Christensen, E. (1997): Variation of cosmic ray flux and global cloud coverage—A missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 1225-1232.

- Svensmark, H., Bondo, T. and Svensmark, J. (2009): Cosmic ray decreases affect atmospheric aerosols and clouds. *Geophysical Research Letters*, 36, L15101, doi:10.1029/2009GL038429.
- Tinsley, B.A. (2008): The global atmospheric electric circuit and its effects on cloud microphysics. *Reports on Progress in Physics*, **71**, 066801, doi:10.108 8/00344885/71/6/066801.
- Usoskin, I.G., Voiculescu, M., Kovaltsov, G.A. and Mursula, K. (2006): Correlation between clouds at different altitudes and solar activity: Fact or Artifact. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 2164-2172.
- Yu, F. (2002): Altitude variations of cosmic ray induced production of aerosols: Implications for global cloudiness and climate. *Journal of Geophysical Research*, **107**, A7, 1118, doi:10.1029/2001JA000248.
- Yu, F. and Turco, R.P. (2001): From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation. *Journal of Geophysical Research*, **106**, D5, 4797-4814.

(2009年11月4日受付, 2010年4月12日受理)