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Abstract—The passage of cosmic ray particles and energetic solar particles through inter-
planetary space is illustrated with a number of idealized examples. The formal examples are
worked out from the condition that energetic particles in interplanetary space random walk in
the irregularities in the large-scale interplanetary magnetic field. The irregularities move
with approximately the velocity of the solar wind. The classical probability distribution is
describable by a Fokker-Planck equation. A general expression for the particle diffusion
coefficient «;, is worked out, including both scattering in magnetic irregularities and systematic
pressure drifts. Magnetometer data from Explorer XVIII is presented to show the close
average adherence of the quiet-day interplanetary magnetic field to the theoretical spiral
angle, and to show the tendency for particles to move more freely along the field than across,
xy > k. The observed fields show that the diffusion coefficient is of the order of 10%'-10%2
cm?/sec, as had been estimated from earlier cosmic ray studies. A middle value of 3 X 102 cm?/
sec suggests a cosmic ray density gradient of about 10 per cent per a.u. across the orbit of
Earth. Direct observations of the interplanetary magnetic field afford the possibility for
quantitative estimate of «;; as a function of particle energy.

The first example to be considered is isotropic diffusion in a spherical region r < R with
uniform radial wind velocity » for the purpose of illustrating the general nature and duration
of the passage of a cosmic ray particle through the solar system. It is shown that the cosmic
ray density reduction is of the order of exp (—vR/«), and, hence, that during the years of solar
activity R/« is not less than about 1 for protons of one BeV or so. It follows from this that the
galactic cosmic ray particles will generally have spent several days in the solar system by the time
they are observed. During this time they are in the expanding magnetic fields carried in the
solar wind and are adiabatically decelerated, losing 15 per cent or more of their energy by the
time they are observed. The energy distribution is shown for particles starting all with the
same energy T, from interstellar space. The incoming probability wave of a single particle is
computed as a function of time, showing how the particle is swept back by the wind.

The converse problem of energetic solar particles is illustrated. The solar particles may
typically lose half their initial energy before escaping into interstellar space. The outward
motion of the wind displaces their probability distribution outward so that ultimately the
maximum solar particle intensity may lie beyond the orbit of Earth. The outward motion of
the wind steepens the decline of the solar particle intensity.

The steady-state cosmic ray intensity is calculated throughout the spherical region r < R
supposing a uniform cosmic ray density N, to obtain in interstellar space. The calculation is
carried out for isotropic «;;, which would obtain if the magnetic irregularities were of large
amplitude and of a scale not exceeding the radius of gyration of the cosmic ray particles, and
for anisotropic «,; with «; >« , which obtains when the field is relatively smooth. (The
observations at sunspot minimum suggest «, >> «; at the orbit of Earth.) The particles diffuse
only along the spiral lines of force when « > « | , so their path in and out of the solar system
is much longer than when «,; is isotropic. The result is a much greater reduction of the cosmic
ray intensity for a given vR/|«;|.

There is no direct observational information on «,; beyond the orbit of Earth, where the
intensity reduction takes place. Indirect information is available, however. There is the fact
that the intensity of energetic solar particles at Earth often decays as ¢~ with g = 1-5-2-0, Tt
is shown that in order for this to follow, it is necessary that [«;| ¢ r* with s = 0-0-0-5 if «;; is
isotropic, and s = 2:0-2-5 if x; > « | . That is to say, if «,; should continue to be as anisotropic
beyond Earth as it is observed to be near Earth, then the diffusion must increase rapidly with
distance from the Sun. These qualitative features should be easily detectable with particle,
field, and plasma observations beyond the orbit of Earth.

* This work was supported by the National Aeronautics and Space Administration under research
Grant NASA-NsG-96-60.

9



10 E. N. PARKER

1. INTRODUCTION
(a) General remarks

Galactic cosmic ray particles reaching Earth must penetrate the interplanetary magnetic
fields lying outside the orbit of Earth. Energetic particles from the Sun must penetrate
the same fields to escape. There is no direct observational information on the fields beyond
Earth, but a sufficient number of inferences can be made to permit a qualitative picture of
the passage of energetic particles. This paper explores the general nature of the passage
of energetic particles through the inferred quiet-day interplanetary magnetic fields.

Galactic cosmic ray particles penetrate into the solar system against the outward sweep
of the magnetic fields carried in the solar wind, leading to a reduced cosmic ray intensity
here in the solar system. The theoretical prediction of the general nature and extent of the
interplanetary magnetic fields"~® made it possible to construct the qualitative features of
the reduction®® and to connect it with the inverse problem of the escape of energetic
solar particles into interstellar space'®. The present paper looks farther into the general
properties of the propagation of energetic charged particles through interplanetary space,
considering transit time, energy loss, and the outward convection of solar particles, which
hitherto have been ignored. The various qualitative conclusions of the paper are based on
exact calculations of idealized models of the interplanetary field which contain the essential
physical features of the actual fields. The purpose is to point out and to illustrate the
essential physical behavior of energetic charged particles in interplanetary space.

It is shown, for instance, that most of the cosmic ray particles incident on the solar
wind from interstellar space are reflected immediately back into space, with a small energy
gain as a consequence of their head-on collision with the outward moving fields in the solar
wind. Only a very small fraction of the incident particles diffuse into the solar wind,
where they remain for a considerable period of time (days or weeks) and lose a significant
fraction of their energy to the expanding interplanetary fields before returning to inter-
stellar space. Energetic particles from the Sun are similarly decelerated before escaping
into interstellar space. The outward convection of solar particles hastens the steepening
of the initial 7= decline of the particle density after a flare. In contrast to this, a low
scattering rate tends to decrease «.

But before going into the formal calculations which demonstrate these effects, we digress
long enough to consider the present state of knowledge of the interplanetary fields on
which the formal calculations are based.

(b) Interplanetary magnetic fields

First of all, the theory of the solar wind predicted in the basic quiet-day pattern of the
interplanetary magnetic field is everywhere (rather than only in isolated streams) an
Archimedes spiral with the Sun at its origin. The theory predicted a quiet-day field of
the order of 3 X 10~® G at the orbit of the Earth, based on a mean field of one gauss at the
Sun. Second, irregularities on a scale of 10°-10% km in the spiral pattern were expected
from theoretical considerations®-®). Irregularities over extensive regions of space were
inferred from cosmic ray observationst’~1%), Recently the interplanetary fields have been
observed directly, verifying the general spiral pattern®®! and giving direct quantitative
information on the nature of the irregularities3,14).

The observations of Ness et al. are sufficiently comprehensive and important for the
present discussion of the quiet-day field to display them in Fig. 1 from orbits 11 and 15
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12 E. N. PARKER

of Explorer XVIIL. For detailed discussion of the magnetometer and the data the reader
is referred to Ness et al.'® The variations of the interplanetary magnetic field recorded
by Explorer XVIII are spatial irregularities transported rigidly in the solar wind blowing
by the vehicle (the Alfvén speed, with which the irregularities move relative to the wind,
is only about 50 km/sec). The plots shown in Fig. 1 were drawn by causing the pen to
progress with constant speed across the paper (representing the plane of the ecliptic) in
the direction of the interplanetary field at each instant of time. Thus, had the wind been
transporting the field in the direction of the magnetic field, the line in Fig. 1 would be an
approximate map of a line of force of the field. Instead, the line has merely the same general
characteristic direction and the same general irregularities as the actual lines of force.
Time is indicated along each line*. The scale of the field is indicated by the middle segment,
labelled 10° eV, which represents 1 X 10 km on the assumption that the wind velocity is
a uniform 400 km/sec. The sharp reversal of the line in Fig. 1(a) at about 2200, 7 January
1964 represents passage of Explorer XVIII into the field from a region of opposite polarity
on the Sun.

In looking at Fig. 1 there are several features which stand out. First of all, there is
the long narrow path followed by the field across Fig. 1, indicating the close average con-
finement of the field to the theoretical spiral angle, already pointed out by Ness et a3
Second there is the continual presence of irregularities of all scales above the 300 sec
(1-2 X 10°km) intervals between data samples. Third, there is the striking tendency in
Fig. 1(a) for the field to bend sharply through one radian or more at intervals of the order
of several million km, say 2-10 x 106 km. The field between the bends curves relatively
gently, except for a few sharp wiggles of small scale (< 10® km). In Fig. 1(b) the field has
the same general characteristics as in Fig. 1(a) except that the sharp bends every several
million km are missing.

In a typical interplanetary field of 5 x 10~% G, the radius of gyration of a proton
moving perpendicular to the field is 0-28, 1-0 and 6-6 million km at 108, 10° and 10'°¢V,
respectively. These lengths are layed out in Fig. 1 for direct comparison with the observed
scale of the irregularities in the field: It is readily seen that the 10'® eV proton has a radius
of gyration comparable to the distance between the sharp bends in the field in Fig. 1(a);
the 10° eV proton has a radius of gyration small compared to the distance between bends
but comparable to the radius of curvature of many of the bends; the 108 ¢V proton has
a radius which is small compared to any feature of the large bends but which is comparable
to some of the occasional small-scale fluctuations.

(¢) Particle motions in the interplanetary fields

Calculations of the motion of a charged particle in a large-scale field containing small-
scale irregularities, such as in Fig. 1, shows that a particle is most effectively scattered by
irregularities which have a scale comparable to the radius of gyration of the particle®®.
Particles of higher rigidity pass through each irregularity with but little deflection. The
calculations show further that, if the irregularity does not leave a net final displacement
in the large-scale line of force, the net deflection is still further reduced. This is because
with no final displacement of the lines of force the deflection of the particle over the first
displacement of the line of force is almost exactly cancelled by the deflection in the return
displacement of the line of force. It is of particular importance, then, to decide whether

* There is a gap of a couple of hours in the data for orbit 11 at about 1800 hours, 6 January 1964. The
gap is not included in the figure since it is not known in what direction to plot the gap.
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the magnetic irregularities each represent a net shear or displacement of the lines of force,
or whether each displacement is followed immediately (within one radius of gyration) by
a restoring displacement. It is interesting to note that in the field illustrated in Fig. 1(a)
the sharp bends represent a net displacement of the field so far as 10° eV particles are
concerned. The return bend is removed more than one radius of gyration. On the other
hand the radius of gyration of a 101%eV particle is comparable to the distance between
bends, so for these higher energy particles the net irregularity has but little net displacement
of the line of force.

Particles whose radius of gyration is small compared to the scale of the field irregularities
pass smoothly through the irregularities, with their motion described by the guiding center
approximation. The particles may be deflected from regions of strong field along the lines
of force, but otherwise pass through freely with little or no change in their magnetic moment.
An isotropic particle distribution where the particles are fed onto the line of force means a
uniform particle density everywhere along the line of force under ordinary circumstances*.
Thus particles with sufficiently small magnetic rigidity may perhaps penetrate into the solar
system more easily than particles of higher rigidity. Low energy electrons, with their
relativistic speed and low rigidity are particularly likely candidates for this. A 10 MeV
electron in a field of 5 x 1073 G has a radius of gyration of only 6 x 10% km.

From the theoretical behaviour of a charged particle in an irregular magnetic field 1516)
it follows from the observations that

(a) for the field observed during orbit 11 cosmic ray particles over the entire range 10°-10% ¢V are
scattered by the irregularities in the spiral field. For orbit 15 protons of 10'° eV are scattered con-
siderably less than particles at 10° eV and below. The mean free path along the field between
scattering lies in the range 1-10 X 10° km (except for 10'° ¢V protons in orbit 15), yielding diffusion
coefficients of 10%1-10%2 cm?/sec, respectively. We have no way of inferring from this the mean free
path and diffusion coefficient far beyond the orbit of Earth, but it is interesting to note that
these numbers are in agreement with the earlier order of magnitude estimates from cosmic ray
observations'®: 8 10:17,18),

(b) the scattering of 10° eV protons is somewhat more effective than the scattering of 101° ¢V protons
in Fig. 1(a) because the 10° eV proton experiences a net change in the direction of the field at each
sharp bend, whereas the 10'° ¢V particle “sees” across the interval between bends, so that for it the
field fluctuates but experiences no net change in direction’®). For this reason the particles below 101°
€V have a mean free path along the field which is comparable to the distance between sharp bends,
and hence is much larger than their mean free path (radius of gyration) across the field. The same
is true at 10® eV but probably to a lesser degree. In Fig. 1(b) the difference in the mean free paths
parallel and perpendicular to the field is even more striking.

The tendency for particles to move along the magnetic lines of force of the spiral more
freely than across, as pointed out in (b), is an essential part of the theoryl® of the diurnal
variation of the cosmic ray intensity at Earth. Some of the additional effects of such
anisotropy are illustrated in section 4.

The steady change of the spiral angle exhibited in Fig. 1(b) is particularly interesting,
since presumably it results from variations of the wind velocity around the Sun and perhaps
with time®.5. Presumably individual instances can be understood in detail as more mag-
netic and wind information become available.

Simpson? has pointed out the different time behavior of the cosmic ray density at
different proton energies over the 11-year cycle of solar activity. We would suppose that
the different behavior is attributable to variations in the qualitative features of the magnetic
irregularities, mentioned in (a) and (b) as much as to variations in average field strength,
wind velocity, and extent of the solar wind into space.

* The exception is when a temporary constriction in the line of force chokes off the particle flow, such
as occurs in the field through a blast wave from a solar flaret®'5,
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It is interesting to note from (a) and (b) that a typical mean free path L of 5 x 108 km
along the magnetic line of force yields a diffusion coefficient « = 1/3 cL of about 5 x 10%
cm?/sec. From this one would expect a variation in the cosmic ray intensity of the order
of 15 per cent per a.u. as a consequence of the outward motion of the fields, which order
of magnitude is in agreement with the low value set by observation‘!%:29), A factor of e arises
over a distance of about 7 a.u., in agreement with the very rough estimates made earlier(s,%.

The time /2[4« to diffuse a distance / = 1 a.u., as in the arrival of energetic particles
from a flare, is 10*sec or about three hours. Considerably longer periods of time are
required for diffusion across the lines of force (section (b) above). This would seem to
account for much, if not all, of the observed delay of arrival of solar particles at Earth,
And with (b) it suggests that the example worked out elsewhere (Parker®, p. 228) for the
arrival of energetic solar particles from a flare on the back side of the Sun might be extended
to include a finite anisotropic diffusion coefficient at all radial distances from the Sun,
instead of an isotropic coefficient beyond a certain distance with free radial passage closer
to the Sun.

2. FOKKER-PLANCK EQUATION

(a) General form of the Fokker-Planck equation

The feature of the interplanetary magnetic field which determines the nature of the
propagation of energetic particles is the general presence of small-scale irregularities in
the field. The irregularities appear with dimensions of 10°-107 km, which are comparable
to the radius of gyration of typical cosmic ray particles, but which are small compared
to the overall dimensions of interplanetary space. The irregularities scatter, or reflect, the
energetic particles back and forth along the lines of force of the large-scale field, so that
there is no tendency for the particles to move systematically in either direction in the frame
of reference of the irregularities. Viewed from the large scale, then, the effect of the mag-
netic irregularities is to cause the cosmic ray particles to random walk in the frame of
reference of the magnetic irregularities. If the scattering is infrequent (compared to the
cyclotron frequency), then the particles random walk back and forth along a line of force
with little diffusion across the lines of force. The particle motion is describable by the well
known guiding center approximation between scatterings. If, on the other hand, significant
scattering occurs as frequently as once each cyclotron period, then diffusion across lines
of force becomes important too. It is evident that the diffusion coefficient describing this
random walk is a tensor quantity «;; with a larger value parallel than perpendicular to the
large-scale field.

The random walk of the cosmic ray particles is a Markhoff process, describable by a
Fokker-Planck equation (see formal discussion in Chandrasekhar®V), To describe the
random walk, introduce the classical probability distribution W(x;, ) of the particle.
Denote the diffusion coefficient by «;;, which is defined such that —«;;,0W/0x; is the particle
flux in the frame of reference moving with the magnetic irregularities producing the
scattering. The magnetic irregularities move with the solar wind, of course, with velocity
v;, so that in the fixed frame of reference there is an additional particle flux v;W of con-
vective origin. The divergence of the total particle flux gives the accumulation at a point,
yielding the Fokker-Planck or diffusion equation

ow 0o 0 ow
FT + E(in) 3 (Ku'é;J) =0
for the particle distribution W(x,, 1)(:8.15,18,

)
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Now while the energetic particle is riding along with the fields in the wind, the magnetic
fields in which the particle is moving are expanding because of the radial divergence of
the wind. The energetic particle is cooled adiabatically*, so that its momentum p declines
as

1 dp 1 9o,

pdt  30x,

and its kinetic energy T declines as

‘xl
where n(T) = 2 for nonrelativistic particles and n(7T) = 1 for extreme relativistic particles.
We shall work with the particle distribution over T, plotting the results for the two cases
n =1,2. To obtain the distribution over p, it is necessary only to replace T by p and put
n = 1. For a radial wind of constant speed v, the divergence dv,/0x, is equal to 2v/r. If
U(x,, T, t) represents the probability distribution over kinetic energy, so that

W(xi9 t) = J‘ dT U(xi’ Ty t)’
0

then the Fokker-Planck equation for U is

o, 2 ( dr\ @ aU)_
2+ (U,)+ (dt)—a—xi(xi,-a; —o 3

As we noted in the Introduction, we shall be concerned with the time of passage of an
energetic particle into and/or out of the solar system, with the energy which the particle
may lose, and with the tendency for the particle to diffuse more readily along the spiral
field than across. The purpose is to point out and illustrate the effects, so that eventually
when increasing observational information permits, they can be studied quantitatively. It
is sufficient, therefore, in this first study to compute the time of passage and the energy
loss with an isotropic diffusion coefficient, in which case (2) reduces to

U v d 2 9 1a(KzaU)=0

o TRn OO Tyl - Ga g @

for radial diffusion and to treat the effects of anisotropy separately.

(b) The general diffusion coefficient

In treating the effects of anisotropy in a spiral field etc., the anisotropic character of
x;; must be retained. To compute the form of «;; let L be the length of the step the particle
makes along the magnetic field B;. Let » represent the number of steps taken in unit time.
Then if the particle velocity is w; we would expect that » = w, /L, approximately, where w,
denotes the component of w; along B,. The diffusion coefficient along the field is

K I o~ 'VL2
The radius of gyration of the particle across the field is S = w | /Q where £ is the cyclotron

* Neglecting possible Fermi acceleration (discussed in Appendix 6) which seems to be negligible.
2
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frequency of the particle in the field. Hence, the diffusion coefficient across the field is
K o2 vS?

if the particle is closely tied to the line of force, v € Q, i.e. if S < L. If on the other hand
L<LS, i.e. if the particle is scattered many times in one cyclotron period (v > Q), then
«, =~ . A sufficient tensor representation of these effects is

v3,; + QQ,
st () ©
where
B

and g and M are the total charge and mass of the particle. This expression for «,; adequately
describes the scattering of the guiding center of the particle. But there may be a net
streaming as a consequence of a pressure gradient in the particle density, or a drift of the
guiding centers. To include these we note®® that the net particle streaming u; at a point
in a large-scale field is

B, 0B, NM dvk] @

e op,
ui_WeijkB) [5x—k+(p” PL)Z?EE—}_ T

for particles of mass M and charge g, where p, and p | denote the particle pressures parallel
and perpendicular to B,, dv,/dt is the acceleration of the solar wind and e, is the usual
permutation tensor, equal to -1 according as ijk is an even or odd permutation of 1, 2, 3
and zero otherwise. The acceleration term dv,/dt can be neglected under most circum-
stances, as can the cosmic ray anisotropy* p; — p, for the present purposes (see discus-
sion®). It is sufficient for present purposes to neglect the changes in particle energy
AMw?, so that p, = §NMw? varies only with N. It follows that the streaming u; can be
written
wh oN

Nu, =~ 302 €Yy 5@‘; ®)
Then since »2L2 = w?(3, we may represent this pressure drift by the artifice of the diffusion
coefficient

1212
Ky = 0 € )]
Combining (5) and () we have altogether
vL2?
Ky =2 2 [1’ 0y + QQ; + ve ] (10)

as a sufficient approximation to the diffusion coefficient for particles with cyclotron
frequency Q and random walk frequency ». Each of the terms in (10) is correct for those
values of »/Q for which the term is non-negligible. The expression is approximately correct

* There are brief periods where the anisotropy‘®%:1% is sufficiently large that it should not be neglected.
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for both non-relativisitc and extreme relativistic particles. We employ (10) for the discussion
of the passage of energetic particles through interplanetary space.

3. PASSAGE OF COSMIC RAY PARTICLES INTO THE SOLAR SYSTEM
(@) The computational model

The physical model employed in the calculations to illustrate the time of passage and
energy loss to cosmic rays and solar particles may be fairly simple, since neither effect
depends critically on the details. We shall ignore all the interesting complications that
may occur in the outer regions of the solar wind-1V and shall suppose that the solar
wind blows radially with constant velocity v and sweeps back the cosmic rays to a distance
R, beyond which is free interstellar space where the cosmic ray density is isotropic and
uniform with N, particles/cm® The discussion will be limited to non-relativistic particles
and extreme relativistic particles so that n(T) may be taken as a constant, with a value
n = 2 and n = 1 respectively.

To obtain an idea of the order of magnitude of the time of passage and the energy
loss, let « represent the cosmic ray diffusion coefficient, which for the present discussion
we take to be isotropic and uniform out to r = R. It is readily shown'®.# that the cosmic
ray density here in the inner solar system is reduced to N, exp (—Rv/x) by the outward
motion of the wind. The observed amplitude of the 11-year variation of the cosmic ray
intensity shows that Ro/« is probably of the general order of unity. In a time 7 a cosmic
ray particle diffuses a distance (4«f)!/%, so that to arrive in the inner solar system from
r = R requires a time

’:4—07=0(§)’ (1

which is just one fourth the time it takes the wind to reach r = R. The solar wind velocity
is, say, 400 km/sec® so that if R is small as 5 a.u. the time ¢ is 5 days, in order of magni-
tude. There are suggestions!!® that R may perhaps be as large as 40 a.u., giving ¢ of the order
of a month. These diffusion times are to be compared with the one hour and the five
hours, respectively, in which a cosmic ray particle would traverse the same distances if
there were no irregularities in the magnetic fields.

The characteristic time 7z in which the kinetic energy of a particle falls by a factor of
e is readily shown from (2) to be

1 ldr
tg T dt
_ 2n(T)v
R

in a uniform radial solar wind with velocity v. Assigning R as the characteristic value of
r, and using (11) gives

ty o %T) t (12)

So by the time a particle arrives here its energy is the fraction exp (—¢/tz) = exp (—n/6) of
the energy which it had in interstellar space. For a non-relativistic particle n = 2 and the
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energy is 0-7 the initial energy; for an extreme relativistic particle the energy is 0-85.
These rough estimates are conservative, as will be seen later when the complete calculation
is carried out from (4). Both the individual particle energy loss and the depression of the
particle density contribute to the observed reduced particle intensity. The energy loss to
energetic solar particles diffusing out through the solar wind into interstellar space is
considerably greater than the energy loss to a galactic particle first arriving at Earth because
the solar particles spend a larger fraction of their time at small r.

The formal calculations in this section will be carried out with the assumption that
v > Q so that (10) reduces to the isotropic tensor* §,#L2. It will also be assumed that «;
is independent of particle energy T and uniform inside r = R. The particle diffusion over
azimuthal angle ¢ and polar angle 6 is not of prime interestt so the computational model
used here, including the cosmic ray intensity at r = R, has spherical symmetry. So the
calculations will be restricted to the radial particle distributions U(r, ¢, T) and WAr, ¢),
omitting dependence on 6 and ¢. The restriction to radial dependence may be achieved
in two ways. We may either introduce the particles in a spherically symmetric manner so
that U(r, 0, ¢, t, T) is automatically independent of 6 and ¢, or if we like, we may introduce
a single particle at a given point and define U(r, ¢, T) as the integral of the resulting
U(r, 0, ¢, t, T) over 6 and ¢,

2 T
UG, 1, T) = f a$ J 0 'sin 6 UCr, 8, ¢, 2, T)
0 0

In either case the distribution U(r, t, T') satisfies (4). The same is true for W(r, 1),

(b) Time of passage

Suppose that a cosmic ray particle from interstellar space crosses r = R into the solar
system and is scattered by an irregularity (at time ¢ = 0) in the magnetic field after having
penetrated a radial distance h. Obviously 4 is of the order of the scattering length L, on
which we will have more to say later. At the instant of the scattering the probability
distribution of the particle is a Dirac delta function in space, located at the point of scattering

_Or—(R—h)]
Wir, 0) = m > (13)
R
4r f dr *W(r,0) =1 (14)
0
Subsequently W{(r, f) is determined by the Fokker-Planck equation
ow v 0 x 0 oW
— e (PPW) = - — 2 ——
ot + r2 or W) r? or (r or ) (13

The particle is assumed to escape freely back into interstellar space when it returns again
to r = R, so there is the boundary condition
W(R, 1) =0 (16)

* The formal computations will be valid even if «;; is anisotropic provided only that «;; is symmetric
and its principal axes lie along the coordinate directions.
t Theoretical examples of diffusion over ¢ and § may be found elsewhere!®,
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The formal solution of (15) subject to the initial condition (13) and the boundary condi-
tion (16) is worked out in Appendix 1. In Appendix 2 the same problem is considered in a
one dimensional space because the result can be expressed in closed analytical form. The
probability wave of the particle diffusing into the solar system against the outward sweep
of the wind is shown in Fig. 2 for the three cases of no wind Rv/«x = 0, a moderate wind
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Fi1G. 2. THE PROBABILITY DISTRIBUTION W(r,t) IS PLOTTED FOR THE TIMES xf/R? = 0-05, O-1
AND 0-2. THE HEAVY LINES ARE FOR NO SOLAR WIND, v = 0: THE BROKEN LINES ARE FOR A
MODERATE WIND Rvf« = 1-115: THE LIGHT LINES ARE FOR A VERY STRONG WIND, Ru/k = 5:53.
THE VALUES OF Rv/x AND «t[R* ARE SHOWN IN THE PARENTHESES ASSOCIATED WITH EACH CURVE,

Ro[x = 1-115, and a strong wind Rov/«x = 5-53. A comparison of the three sets of curves
shows that (a) W(r, ) is reduced by the outward sweep of the wind, (b) the position of the
maximum (dW/or = 0) is moved outward, and (c) the duration of W is reduced. In Fig. 3
are plotted times at which W reaches a maximum at r = 0, the maximum value which
W reaches at r = 0, and the characteristic time of the subsequent exponential asymptotic
decay, as a function of wind strength Rv/«.

The probability that a particle be observed at (7, £) is proportional to W{r, t), obviously.
So W(0, ¢) is a measure of the probability that the particle be observed in the inner solar
system. Hence the most probable time for a particle to be observed is the time at which
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WA(0, £) is a maximum, plotted in Fig. 3. The time of maximum W(0, r) is a measure of
the time that observed cosmic ray particles have spent in the solar system prior to observa-
tion. In Fig. 4 the time in seconds to the maximum W(0, ¢) is plotted as a function of
Rv/« for a solar wind velocity of v = 400 km/sec and for various values of « in the expected
range of 1010?22 cm?/sec. It is readily seen that for Ro/« of the order of one, the time the
average particle spends in the solar system prior to observation is of the order of days.

\TIIIIG

R/h 4mR3 Wpay (0,1)

vR/k

FiG. 3. THE MAXIMUM VALUE OF W(0, 1) IS SHOWN BY THE BROKEN LINE. THE TIME x'/R? AT
WHICH W(0, 1) REACHES ITS MAXIMUM IS SHOWN BY THE SOLID LINE. THE ASYMPTOTIC TIME
IN WHICH W(r, ) DECAYS BY A FACTOR OF e IS SHOWN BY THE DOTTED LINE.

Higher solar wind velocities for the same value of R/« reduce the time somewhat, as may
be seen from (11).

As was noted earlier the period of days which the particle spends in reaching the inner
solar system is to be compared with the transit time of an hour or so in the absence of
interplanetary fields. The particle remains in the solar system for days, instead of an hour,
say 25 times longer because of the fields. Combining this with the fact that the cosmic
ray density is lower by perhaps a factor of e in the inner solar system, leads to the con-
clusion that not more than about 10-2 of the number of particles which would pass through
the inner solar system in the absence of interplanetary fields actually succeed in getting
here. The other 99 per cent, or more, are excluded from the inner solar system by the out-
ward sweep of the fields in the solar wind. We will have more to say on this later when we
consider the total energy inventory of cosmic ray particles from interstellar space which
run up against the outer boundary of the solar system.

(¢) Energy loss during passage

To illustrate the energy loss of the cosmic ray particles which diffuse into the solar
system consider the simple situation in which particles with energy T, and density N, fill
space everywhere outside r = R. These particles are free to enter the region of diffusion
r < R and escape freely from r = R following diffusion. Hence their distribution U(r, T)
over r and T satisfies the boundary condition

UR, T) = NgXT — T) an
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The distribution in r < R is determined by (4) with 9U/0¢ = 0. The appropriate solution
of (4) is worked out in Appendix 3. If Rv/x = 0 it is obvious that U(r, T) = U(R, T).
For Rv/« > 1 the asymptotic form of the energy distribution U(0, T) in the inner solar
system is readily obtained, and is plotted in Fig. 5 for the special case Rv/x = 5. Figure 5
serves to illustrate the form of energy spread in the inner solar system where the particles

Rv/«x

00l | A 1 |
03 104 105 108 107
tmax sec

FIG. 4. THE MOST PROBABLE TIME Z;,x FOR A PARTICLE TO BE OBSERVED AT THE ORIGIN AFTER
CROSSING THE OUTER BOUNDARY ¥ == R OF THE DIFFUSING REGION. THE SOLAR WIND VELOCITY
18 TAKEN TO BE 400 km/sec. THE DIFFUSION COEFFICIENT x CORRESPONDING TO EACH CURVE IS
GIVEN IN cm®fsec, THE VALUE OF R IN ASTRONOMICAL UNITS IS INDICATED ON THE BROKEN
LINES. THE QUANTITY Rv/« IS THE LOGARITHM OF THE COSMIC RAY INTENSITY N/N, AT THE ORIGIN,

are observed, which must be unfolded from any observed spectrum if it is desired to obtain
the energy spectrum of the cosmic rays in interstellar space.
The mean energy (T of the particles arriving at the origin is given by

F" dTTU O, T)
_Ja

M=
f dT U0, T)
o]

) (18)

and is plotted in Fig. 6 as a function of Rv/x. The breakdown of the asymptotic solution
below Rv/x = 5 is indicated by the intermittent character of the line. The dotted line is
a suggested interpolation based on the asymptotic solution above Rv/x = § and the point
(T) = T, at Ro/x = 0. Itis evident from Fig. 6 that for Rv/x = 1 the mean particle energy
in interstellar space may be fifty per cent higher for nonrelativistic particles and twenty
per cent higher for extreme relativistic particles than is observed in the inner solar system.,
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FiG. 5. THE ENERGY DISTRIBUTION U(0, 7) AT THE ORIGIN FOR MONOENERGETIC PARTICLES

INTRODUCED STEADILY AT r = R FOR THE SPECIAL CASE THAT Rvjx = 5. THE TWO CURVES

n =1 AND n = 2 REFER TO EXTREME-RELATIVISTIC PARTICLES AND NONRELATIVISTIC PARTICLES,
RESPECTIVELY.

It shows also that if Rv/« should be significantly larger than one, the cosmic ray particles
in interstellar space may be very much more energetic than observed here.

The reader who is interested in the energy loss to particles in interplanetary space is
referred to additional illustrations elsewhere in the literature. Singer e al.®®*® have con-
sidered the problem of deceleration without including the convective term in (4). It is
possible with this omission to treat the diffusion coefficient « as a general function of 7,
using the mathematical formalism of the Fermi age theory. The particle energy loss behind
a blast wave from the Sun has been discussed by Parker®. Generally speaking, the de-
celeration contributes about as much as the density decrease to the observed reduction of
cosmic ray intensity in the solar system.
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FI1G. 6. THE AVERAGE PARTICLE ENERGY {(7T) AT THE ORIGIN FOR MONOENERGETIC PARTICLES
INTRODUCED STEADILY AT 7 = R, PLOTTED AS A FUNCTION OF Rv/x. THE SOLID CURVES ARE
PLOTTED FROM THE ASYMPTOTIC FORM WHICH BREAKS DOWN SERIOUSLY BELOW Rv/x ~ 5, WHERE
THE DOTTED LINES SERVE AS A SUITABLE INTERPOLATION. THE TWO CURVES n = 1 AND n = 2
REFER TO EXTREME-RELATIVISTIC PARTICLES AND NONRELATIVISTIC PARTICLES, RESPECTIVELY.
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(d) Total energy transfer between solar wind and cosmic rays

The work P which the cosmic ray particles in r < R do on the expanding fields of the
solar wind is

R
P =A4n f drr? ‘i]: ‘ N(@) (19)
0 dr

in unit time, where N(r) is the total particle density. For stationary conditions d7/dt is
given by (2) as

dr| 2nv
and
N() = Nyexp [—(R — Pj«] @1

Now if Ro/x < 1, then T is very roughly equal to T, in (20) (see Fig. 6). Only where
(R — rw/x > 1 does T differ a whole lot from T,. But in such regions N{(r) is extremely
small, as is evident from (21), so that the error made in writing T~ T, contributes very
little to the integral in (19). Hence to a sufficient approximation

47 R3 2nN,T, ( * )2 [ ( UR) ( Rv)]
a2 T 1+ =2 = 22
Pe— 72 % )Pl (22)
For Rofx £1,
47 R3 nN, T,
) 90 23
=73 R (23)

and for Ro/x > 1,

~

47 R3 2nN, Ty ( ® ) 2 24)

3 R Rv

In addition to the work P done by the cosmic ray particles on the wind, there is the work
P’ done by the wind on the cosmic ray particles. When a cosmic ray particle approaches
the solar system and makes a collision with the magnetic fields carried in the wind, that
collision is a head-on collision and the cosmic ray particle receives energy O(T/c) by the
well known Fermi mechanism. This is only a small energy gain per particle, but so many
particles are involved that P’ > P. That is, the energy lost from each particle in the solar
wind is large compared to Tyv/c, but so few particles penetrate into the solar wind that
there is a net transfer of energy from the wind to the cosmic ray particles. It is shown in
Appendix 6 that

87T.R3 N, oT oV
P2 5
3 R (23)
for the simple nonrelativistic case. The net transfer Il is then
M=pP —P (26)

from the wind to the particles. For Rv/x <1, Il goes to zero, as we would expect of a
slow or transparent wind. For Rv/« > 1, P< P’ so that Il ~ P’. Thus II is positive for
all positive Ro/r, indicating that in general the stellar wind regions throughout the galaxy
do work on the cosmic rays. This general Fermi acceleration by stellar winds was considered
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some time ago by Davis2% who showed that it probably contributes very little to the overall
acceleration of cosmic rays in the galaxy. It does, however, consume a significant portion
of the energy in the solar wind, which is evident from the fact that the galactic cosmic rays
form a large fraction of the interstellar pressure against which the solar wind is working4.8,26),
The kinetic energy in the solar wind is of the order of 10" ergs/sec, whereas something like
10% ergs/sec per star seems to be needed to maintain the galactic cosmic ray intensity.

4. PASSAGE OF ENERGETIC SOLAR PARTICLES OUT OF THE SOLAR SYSTEM

(@) Time of passage
Consider the escape of energetic particles from the Sun out through the interplanetary

fields into interstellar space. If particles are released suddenly at the origin at time ¢ = 0,

the initial condition is

lim 080 — €

W(r,O) = 6*0__4777

27)
together with the boundary condition (16). The solution of (15) for this case may be
constructed from the solution given in Appendix 1 by replacing R — 4 there with ¢. The
decay of the particle density W(0, ) at the origin is illustrated in Fig. 7 for various effective
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FiG. 7. THE DECAY OF THE PARTICLE DENSITY W(0, 7)) AT THE ORIGIN IS SHOWN BY THE SOLID

CURVES AS A FUNCTION OF kt/R? FOLLOWING RELEASE AT THE ORIGIN AT TIME { = 0. THE PARAM~

ETER Ru/xc REPRESENTS THE RELATIVE STRENGTH AND/OR EXTENT OF THE SOLAR WIND. THE

BROKEN LINES REPRESENT THE DECLINE OF THE MAXIMUM PARTICLE DENSITY IN THE RADIAL
DISTRIBUTION PLOTTED IN FiG. 8.
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wind strengths Rv/«. Itis evident that the effect of the wind velocity v is to assist the diffusion
in transporting solar particles out of the solar system. To compare the convective velocity
v with the diffusion velocity, note that the particles diffuse a characteristic distance r in a
time ¢ where r? = 4«xz. Hence the characteristic diffusion velocity is

1t is evident that the diffusion velocity exceeds the convective velocity at first, and the two
become equal only when rv/x = 2. But we have pointed out that the maximum value of
rv/«, namely Rv/x, may perhaps be only as large as 1. If this is correct, then the diffusion
velocity may dominate the convective velocity at all times. Then as a first rough approxima-
tion the decay proceeds as t73/2 near the Sun until the particles begin to reach R in significant
numbers, whereupon the decay becomes exponential as described elsewhere ®#. The
effect of the convection (which may be large if Rv/« should prove to be greater than one)
is to hasten the onset of the steepening of ¢~3/2, which leads eventually to the asymptotic
exponential decline. The convection also increases the rate of the final exponential decline,
as may be seen from Fig. 3.

Perhaps the most novel feature introduced by the convection is the asymptotic form
of the particle distribution in space during the exponential decline. In the absence of
convection this distribution is of the form sin r/r, which is a maximum at the Sun. In the
presence of convection the distribution is more complicated, with a minimum at the Sun
and a maximum at some distance out in space. Rv/x = 1 puts the maximum at the orbit
of Earth or beyond, as may be seen from Fig. 8. The particle density at the maximum may
be considerably greater than at the origin. The particle density at the maximum as a func-
tion of time is shown in Fig. 7 by the broken lines.

In closing this discussion we remind the reader that the actual diffusion in interplanetary
space is not uniformly distributed throughout the solar system, as it is in the present
illustrative examples, so that one must be cautious in making detailed application to so
localized a region as the space circumscribed by the orbit of Earth. Observations®-8-2%
show evidence of inhomogeneities in « within 5-10 hr after a flare, before the solar wind
has had time to sweep more than 0-1 a.u. The present calculations are intended only to
illustrate the general trend caused by the wind, such as the tendency for the particle density
to be a maximum at some distance out in space from the origin. For fitting data taken in
the restricted volume of space open to observation near the orbit of Earth the simple
models with Rv/k = 0'®) are as good as any, because their simplicity permits other com-
plications such as changes in « to be considered easily too.

(b) Energy loss during outward passage

The energetic particles from the Sun are cooled adiabatically in the expanding fields
carried in the solar wind, just as are the galactic cosmic ray particles. If, as an extreme
case, the effective diffusion coefficient « were so small that the particles were constrained
to move with the solar wind (Rv/«x =< c0), then the particle energy T would vary approxi-
mately as the density to the power n/3, where n = 1 for extreme relativistic particles and
n = 2 for nonrelativistic particles. A particle of 10° ¢V released from the flare where the
gas density is say, 107/cm?, would have only about 10° eV at the orbit of Earth where the
density is, say, 10/cm3. As already noted, « appears to be sufficiently large that the particles
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escape more rapidly than the solar wind velocity v. To treat the energy loss in this case,
suppose that particles of energy T, are released continuously at the origin at the rate
of Nfsec. The boundary condition is

d [+o]

—dmrie — f dT U(r,T)=N
dr Jo

or

N&(T — T,)

U, 1)~ 4ricr

(28)
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FIG. 8. THE ASYMPTOTIC RADIAL DISTRIBUTION OF THE PARTICLES FOR LARGE VALUES OF «f/R?
ARE PLOTTED FOR VARIOUS WIND STRENGTHS Ru/r.

as r - 0. At the outer boundary (16) prevails. Solution of (4) is given in Appendix 4.
The decline of the energy T as the particles diffuse outward through the solar system is
illustrated in Fig. 9 where the mean particle energy (T) is plotted as a function of radial
distance r for the case that R > r. Since presumably Rv/k is as large as O(1) during the
years of solar activity, it is readily seen that the energetic nonrelativistic solar particles
have had their energy reduced by a factor of the order of four before they escape into inter-
stellar space. Even extreme relativistic particles have their energy reduced by more than
a factor of two. This serious deceleration must be kept in mind in theories for the origin
of cosmic rays in which the cosmic rays are injected from stars and novae etc.

Since ro/x at the orbit of Earth is presumably small, of the order of 1071, there is
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probably little energy reduction at Earth of particles which have diffused directly from the
Sun. Figure 9 suggests only a 25 per cent reduction in nonrelativistic particle energy for
rofx == 0-1,

The energy lost by the energetic particles goes into increasing the velocity of the solar
wind. But observations suggest that the energetic particle density probably never gets so
high in interplanetary space that the wind velocity is greatly increased thereby. The
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FI1G. 9. THE MEAN ENERGY {T") OF PARTICLES WHICH HAVE DIFFUSED FROM THE ORIGIN, WHERE

THEIR ENERGY WAS Ty, TO A RADIAL DISTANCE r. THE PARAMETER 8n/3 HAS THE VALUE 16/3

FOR NONRELATIVISTIC PARTICLES AND 8/3 FOR EXTREME RELATIVISTIC PARTICLES. THE PARAMETER

Rvjx 1S A MEASURE OF THE DISTANCE TO WHICH THE REGION OF DIFFUSION AND DECELERATION
EXTENDS.

kinetic energy density of a minimal quiet day wind of 2 hydrogen atoms/cm® at 400 km/sec
is 0-4 x 1078 ergs/cm?, or some 4 x 10® times the normal galactic cosmic ray background.

5. ANISOTROPIC PASSAGE OF ENERGETIC PARTICLES

(a) Cosmic ray modulation

The effect of the solar wind on the passage of energetic particles in and out of the solar
system has been illustrated in the preceding sections with the simplification that the diffusion
coefficient «; is isotropic, corresponding to ¥ > Q in (10). In this way the convection and
deceleration of the particles were illustrated. In the present section we undertake to illustrate
the effects of anisotropy, omitting the previous effects of convection and deceleration.
Consider the situation that x| < «; as a consequence of the cyclotron frequency ) being
large compared to the scattering frequency ». Then

Ky o2 vL2 %;;—’- , (29)
and the diffusion is limited to the direction along the lines of force of the underlying field.
In this approximation the particle density along each line of force is independent of the
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density distribution along the neighboring lines of force. Let « denote the diffusion co-
efficient along B;. For the idealized case that the solar wind is uniform around the Sun the
underlying pattern of the interplanetary field is the spiral®:®

r=—, 8= constant 30)

where o is the angular velocity (3 X 10-¢ radians/sec) of the Sun. It is readily shown (see
Appendix 5) that a uniform cosmic ray density N, beyond r = R with a uniform diffusion
coefficient « inside r = R, leads to the cosmic ray density

0.0~ o |- [+ (R2sn0)) o

at the origin. Noting that rw/v is of the order of unity at the orbit of Earth, it is evident
that (Rw sin 8/v)? is very large compared to unity, so that the reduction for a given Ru/«
is by much more than the factor exp (—vR/«) for isotropic diffusion. The adiabatic de-
celeration is also much greater for a given Rv/x. The reason for the greater reduction is
simply that the spiral path by which the particles can enter the solar system is very much
longer than the radial path available when «,; is isotropic. The time to diffuse from R
in to a given r is considerably increased, so that the outward convection has longer to act
to reduce the particle density. It is evident that values of Rv/x considerably less than one
will account for a reduction of the cosmic ray intensity by a factor of e.

(b) Escape of solar particles

In the presence of isotropic diffusion the density of a burst of energetic particles released
at the Sun dies away as 1/¢3/2 8 throughout the inner solar system (neglecting the convec-
tion discussed in section 3). In the present case also a burst dies away as 1/¢3/2 during the
initial stages, because the lines of force, along which the particles diffuse, are approximately
radial near the Sun. But as the particles reach the outer regions, (rw/v) sin 6 > 1, beyond
the orbit of Earth where the field is seriously spiralled, the path length increases and the
decline goes as 1/t3/4 (see Appendix 5). It is interesting to note that in a two dimensional
model (cylindrical Sun etc.) the decline is 1/t when the field is radial and 1/¢1/2 when the
particles reach into the spiral. The exponent on the time appears to be reduced to one
half by the spiral pattern. It is evident also that the adiabatic deceleration must be greater
than computed for isotropic diffusion for a given vR/x.

(¢) Effect of varying diffusion coefficient
If it is assumed that the diffusion coefficient increases outward in proportion to r,
then it is readily shown (Appendix 5) that the cosmic ray intensity has a value

p \vike o2 oR \?
N= "% (ﬁ) exp {m [“ (vsinﬁ) ]} (32

at a radial distance r = (v/w) sin 6 of about one a.u. where « now denotes the diffusion
coefficient at the same distance. The more general case that « oc r* is also given in Appendix
5%, where it is shown that for s < 4 the density of a burst of particles released at the origin
declines as 1/3/%-%. The decline is more rapid for larger s.
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(d) Comparison of the results for isotropic and anisotropic diffusion

It is interesting to note that the constraint of the particles to the spiral lines of force
has the same effect as an isotropic diffusion coefficient proportional to (1 + u?)™, u =
(rwfv)sin 8. A diffusion coefficient proportional to (1 + #®p(u) makes the behavior of
the particle density constrained to diffusion along the lines of force identical with the
behavior in the isotropic case with the diffusion coefficient given by just y(u). In view of
these facts and the theoretical conjecture that « must in general increase somewhat with
the weakening fields at large distance from the Sun, we are unable at the present time to
make any assertions whether the anisotropic diffusion along the observed lines of force
at Earth extends very far beyond the orbit of Earth.

In fact the difference between the two situations is very slight so long as we are restricted
to observations near the orbit of Earth: On the one hand, suppose that the particles
diffuse only along the magnetic lines of force. Put « oc #® so that a burst of solar particles
declines like the typical 1% (see Appendix 5, equation 17) demanded by observation.
Then in order that the cosmic ray density at 1 a.u. be the fraction exp (—1) of the density
at r = R (as minimum requirement for the 11-year variation) it is readily shown from
(Appendix 5, equation 18) that the diffusion coefficient at the orbit of Earth must have

the value

Ko

vt (wR sin 8 v )
wsin v wRsin 6

For a 450 km/sec wind the length v/w is just 1 a.u., so that with 6 = =/2 this yields
1
ko= 675 x 1020 (R — E) cm?/sec 33)

if R is measure in a.u. Any value of R in 5-20 a.u. gives the right order of magnitude
(10%-10%) for «. On the other hand, for isotropic diffusion, suppose that « is more or
less independent of radial distance from the Sun, so that flare particles again decline as
t715, Then put Rv/x = 1, so that the cosmic ray density is again the fraction exp (—1) of
the interstellar density. We have

Kk = 675 x 10*R cm?/sec (34

for a 450 km/sec wind if R is measured in a.u. The similarity of the values of « obtained
from the two extreme situations, (33) and (34), for R > 1 is immediately evident.

The difference between the two models lies in the behavior of the interplanetary field
beyond the orbit of Earth. If the spiral structure presently observed near Earth, extends
far beyond Earth, then theory requires an associated rapid increase of « with distance,
say as r2. If the spiral structure is largely obliterated by disorder, x presumably remains
more pearly uniform for a distance of at least a few a.u. It will be extremely interesting
when space vehicles venture significantly beyond the orbit of Earth, to see what they show.
Actnally the two idealizations of a « increasing as fast as %, or a « which does not increase
at all both seem rather extreme to us, so we would not be surprised to find the actual situa-
tion somewhere between the two idealized models of complete isotropy and complete
anisotropy used for illustration here. Perhaps one situation prevails during one part of
the cycle of solar activity, and another during the other part.

* The case that « o r* is worked out elsewhere®® for isotropic diffusion.
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It has been pointed out elsewhere!!® that the anisotropy (scattering frequency < cyclo-
tron frequency) at the orbit of Earth plays an essential role in producing the diurnal effect.
The diurnal effect demands a certain amount of diffusion across the magnetic lines of force
beyond the orbit of Earth, but the amount is so slight that it does not appear to help
resolve the present question. Theoretical models, with all the complications of convection,
partial anisotropy, spatial variation of «;; etc., must await further guidance from observa-
tion.

6. SUMMARY AND CONCLUSIONS

The present study has been aimed at qualitative illustration of the physical behavior
of energetic charged particles in the interplanetary magnetic fields. The random walk
treatment of the particle motion has been extended to the anisotropic case of preferential
diffusion along the magnetic lines of force. The recent magnetometer observations of the
interplanetary magnetic fields near Earth indicate that the diffusion is in fact preferentially
along the magnetic field, though we have no idea how far this extends beyond the orbit of
Earth. A detailed comparison of the diffusion of energetic solar particles into interstellar
space shows that preferential diffusion along the underlying spiral magnetic pattern de-
creases the power o of the particle density decline 1/¢* after a flare to about half the value
it would have if the diffusion were isotropic. For instance, the decay for a uniform diffusion
coefficient « along the spiral lines of force gives « = 3/4, whereas isotropic diffusion gives
o = 3/2. The observed values of « following a solar flare are generally 1-5 or more. So
if the diffusion coeflicient were uniform, as assumed in obtaining these results, the diffusion
along the spiral could be ruled out in favor of more nearly isotropic diffusion. Unfortu-
nately the expected increase of the diffusion coefficient « with distance from the Sun
increases «, so the situation is not as clear as one might hope.

Now quite apart from the question of isotropy versus anisotropy, we were able to
illustrate the inward progression of an individual cosmic ray particle from interstellar
space to the orbit of Earth. The progress of individual cosmic ray particles is not some-
thing that one observes directly, but the period of time for the inward passage, which we
estimate conservatively to be a few days during the years of solar activity, makes it clear
that the typical cosmic ray particle loses not less than 15 per cent of its initial energy. This
energy loss, and the uncertainties in it, should be taken into account in any extrapolations
that are made to estimate the cosmic ray energies in interstellar space. It was also possible
to show that about one in 10% of the galactic cosmic rays incident on the outer boundary
of the solar wind succeeds in penetrating to any great depth. But that once having pene-
trated to the orbit of Earth, the particles remain perhaps 25 times longer in the solar system
than if there were no interplanetary magnetic fields. The principal energy exchange
between the wind and the galactic cosmic ray particles is the head-on collision which the
reflected cosmic ray particles make with the fields in the wind. A large portion of the
solar wind energy is transferred in this way into the cosmic rays which fill interstellar
space.

The outward passage of energetic particles from the Sun is affected by the motion of
the wind. For uniform diffusion « the initial density decline of a burst of energetic particles
is 1/13/2, The effect of the convection by the solar wind is to increase the rate of the decay
after a time, hastening the onset of the final exponential asymptotic decay, which begins
when the particles reach the outer boundary » = R in significant numbers. The convection
reduces the characteristic time of this final decay too. The convection has the further effect
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of moving the maximum of the declining particle density from the Sun, where it resides
in the absence of wind, outward to some position beyond the orbit of Earth during the
final period of exponential decline (see Fig. 8).

The theoretical considerations taken up in this study show the kinds of questions that
can be answered only by observations. First of all, it is evident that much more informa-
tion of the kind illustrated in Fig. 1 needs to be accumulated near Earth. As pointed out
elsewhere™ the question of whether the magnetic irregularities are unrelated bends, or
localized waves, in the lines of force, has a great deal to do with their effectiveness in
scattering high energy particles. Does the field in fact follow the pattern set by these
preliminary plots, with a tendency for a sharp bend every 1-10 X 108 km or so, or is the field
usually smoother, or much more regular? The basic tensor properties of the diffusion
coefficient «,; depend very much on such things. And whatever the nature of the field now,
how will it, and «,;, vary over the 11- or 22-year cycle of solar activity. Then there is the
question of the field, and «; beyond the orbit of Earth. Do the irregularities in the field
increase beyond Earth, or do they decrease? How does the tensor form of «,; change with
radial distance from the Sun? How does the magnitude of «;; change? It will be par-
ticularly interesting when detailed studies of the time varijations of solar particle intensities,
which have already thrown so much light on the properties of the interplanetary field®:10:17.18
can be carried out in association with simultaneous direct observation of the interplanetary
fields.

The ultimate observational question is, of course, to determine by how much the cosmic
ray density is reduced in the inner solar system below the level in interstellar space.
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Pesiome—/laercs NOACHeHNe, COIPOBOKIAEMOe PAJOM HeAIU3NPOBAHHEIX IIPUMEpPOB,
MIPOXOyA YACTHI] KOCMUYEeCKUX IIydeil Yepe3 Me;KILIaHeTHOe IpocTpaHcTBo. Popmanb-
Hble NPHMEDPH paspaCoTaHBl Ha HPENNOJOMEHMM, YTO DSHepreTHYecKme dJACTHIH B
MEIKIUIQHETHOM IPOCTPAHCTBE GJYHHIAOT B HEOFHOPOZHOCTAX B IPOCTPAHHOM MeiK-
IJIAHETHOM MAarHuTHOM Hoje. HeomHOPOXHOCTH NPORBHUTAIOTCA CO CHOPOCTBIO MPHG-
JIMBUTENLHOM COJIHEYHOMY BeTpy. DBeposiTHOe KIaccumdyeckoe pacHpefelieHMe MOMKET
6piTh nopeefieHo noy, ypasHeaue Poxkep-Ilnanra. PaspaGorano BeHpameHue o0mero
xapakrepa Bug koapdunmenTa i« paccedHMA YaCTHH, BKIIOYAONIEe KAK DACCedHNe B
MArHNTHHX HEONHOPOTHOCTAX, TaK U ApeiidB cmcreMarHuecKOTo jaBlleHMA. Jaiorca
MArHHTOMETpPOBHIE JAHHHE, IoJy4yeHHHe HccaepoBareleM XVYII, dro6m mnokasars
HACKOJLKO TeCHO—B CpeJHeM—Me;KIIaHeTHOe MArHUTHOE IO0Je, B CIOKONHHIA feHb,
COTIACyeTCA C TeOpeTWYeCKMM CIHMPAIbHHM YTJIOM, a TaKMe YKasaTp HA TO, 4TO
YACTHIH NPHBHYHO NepPeABHIAIOTCA CBOGOKHEe BAOAL IOJH, HewedM NONEpeK Hero,
k.1 . HaGmomaembie mojia o6HAPYKHMBAIOT, 4T0 KOs(dUUUMEeHT paccesHMA NPUHA-
JeRHuT TNOpAAKY B 10%-10%2 cM2 ceK, COOTBETCTBYIOIEMY IDEKHHM KAJTbKYIALMM B
u3ydYeHHH KocMmmyeckux Jjydeli. Cpennee sHavenue B 3 X 10%! cm? cek, sacraBisieT
HpefnoJaarath, YT0 IpajMeHT INIOTHOCTHM KOCMMYecKHMX Jydelt mpmuGa. 109, ma a.e.
nonepex opouTh 3emiu.

HenocpencTeenHse HAGMIOAEHNA MeKIIIIAHETHOTO MArHUTROTO HOJIA TPEAOCTABIAIOT
BO3MOKHOCTD KOJIUYECTBEHHOTO BHYMCIEHUA ky;, B KA9€CTBe QYHKINA BHEPIrUK YaCTHI.
TlepBrM IpUMEpPOM, HOQJISHKALIMM PACCMOTPEHMIO, ABIAETCA NB0TPONMHOe paccesiHue B
chepuueckolt o6aacTn r < R ¢ paBHOMepHOH pagMalbHON CKOPOCTHIO BeTpa v, H OH
JaeTcA B HedsX WLNoCTpanuu oO0mero Xapawxrepa IPOAOIKHTEILHOCTH IIPOXOAa
YaCTUIB KOCMAYECKOTO JIy4a 4epes COTHeUHYI0 CHCTeMy. ¥ KashBaeTCH, YTO INIOTHOCTH
KOCMHYECKMX Jiydell COKpamaercA B MopsaAke eXp (—vR[«) W 4YTO CllefoBaTelbHO B
TOHHL COJIHEYHON aKTUBHOCTH ¥R/« He MeHee 4eM Ipubi. 1 [JIA DPOTOHOB OfHOTO BeV,
HIIA OKOII0 3TOr0. VI3 TOTO CilefyeT, YTo rallaKTHIeCKHe YACTHIB KOCMUYECKNX Jydeit,
KO BpeMeHHM HAONIONEHUsI MX, yike OGHYHO TIPOBENN HECKOJBKO JHell B COIHeYHOit
crcremMe. B TeveHHe HTOTO NEpHONA OHM HAXOIATCA B PACIINPSIONINXCA MATHUTHEIX
MOJSAX, HECOMEIE COJIHEYHHM BeTPOM, ¢ amuafaTMyecKM 3aMe[JeHHOH CKOpPOCTLIO,
yrpaunBad 15 unm Goslee IPOIEHTOB CBOeil SHEPTUM K TOMY BPeMEHH, YTO OHU LOABEp-
rajorca HaGaogeHuAM. PachpejelleHWe SHepruM yKAas3aHO NJIA YAaCTHI ¢ ONMHAKOBOiM
HCXOXHON sHeprueit T, OT Me:K3Be3IHOIO NHpocTpawcTBa. Hacrymaoumas BepoATHam
BOJTHA €NMHON YACTHIH MCUMCIACTCA B KauecTBe QYHKIMN BPeMeHM, YKA3HBaA Kak
HaCTNNA OTHOCHTCH BETPOM.

IHaerca mmmocrpanua o6paTrHo IPoGieMBl SBHPTeTHYECKHX CONHEYHEX YaCTHI.
CoJHEYHEIE YaCTHUEL MOTYT XapaKTepPHEM 0GpasoM yTepaTh 509, cBoell mepBOHAYAIL-
HOIl SHEPIrHHU MO TOr0, KAK YCKOJBL3HYTH B MeKsSBe3JHOe IPOCTpaHcTBo. J[IBmienue
BeTpa, HANPABIIEHHOE HADYKY, NepeMelaeT X BEPOATHOE DAclpefiesieHne HAPYHKY
TakUM 06pPasoM, YTO B HOHEYHOM CYeTe MAKCHMAJIbHAS NHTEHCHBHOCTH COTHEMHON
YaCTHIHI MOMRET HAXONUTHLCA 33 IpefenaMu opbutHl 3eman. HampasiermHoe mapymy
ABIMKEHNE BeTpA yCKOPAET NMORMAEHNe MHTEHCHBHOCTH CONHEYHOM 4aCTAIb.

VeTollunBoe COCTOSHME WHTEHCHBHOCTH KOCMMYECKHMX Jy4Yell BEUMCIAETCA 10 BCeH
cepudecroit o6nactn » < R IpH ycIopuu pABHOMEPHOCTH INIOTHOCTH Ny KOCMAYECKUX
nydelf, TOJy4aeMO¥ B MeK3Bes3JHOM HpPOCTpaHCTBe. Pacder HpoussBoguTes MIJIA
HUBOTPOIHOTO ki M OH IOIY4YaeTcd MpH YCIOBHM, 4YTO MATHHUTHEE HEOTHOPOTHOCTH
60JIbUION AMIIUTYAH H MacumTafoM HeNPeRHMIAIINM pPafANyC BPAMEHAA YacTHI|
KOCMUYECKHX JIyueii, a TaKiKe [NJA AHM3OTPOIHOTO ky, IIPH Kk > x|, HOJydaeMoro,
KOTJIa mOoJie OTHOCHUTENbHO ciiokonHo. (HabmomeHusa mpu MUHMMYME COJIHEUHHIX NATEH
3aCTABIAIOT UPEANONAraTh, UTO x> x| Haxomurcs y opOurel 3emun.) YacTumst
PACCeMBAIOTCA JMIIb BHOIL CHUPAILHBIX THHAHN CHIB, KOTHA «y >> k) U TAKUM 00pasoM
VX MyTb B ¥ U3 COJHEYHON CHCTEMBI ropasfo AJmMHee, 4eM B TOM CJIydae, HOI[A i,
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usoTponno. B pasyibrare, MHTEHCHBHOCTH HOCMHYECKHX JIyveil MOHMKAETCA ropasyo
Gonbire AMA JAHHOTO Y R/ky.

OTHOCHTEIILHO Ky HE MMEETCH HeIIOCPeACTBeHHOM 00CepPBAIMOHHON NHGOPMALIAHN 32
npeaesiom opOuUTH 3eMiM, e NPOMCXORWT IOHMKeHMe MHTeHCHBHOCTH. OxHAKO, B
pPAacHopsKeHHN UMeeTCH KOCBeHHAd MHPOpMAnuA, Kak TOT JaxT, YT0 MHTeHCHBHOCTH
9HEPreTHYECKHX COJHEYHHX YACTUI[ HepegKO 3aTyXaeT, Kak ¢-g, npu g = 1,5 — 2.0,
VHKasHBaeTCH, 4TO AJIA TOro, 4T0GH 9TO CIYUYMIOCh, HEOGXOMAMO, YTOOH |xy| o 7* MpH
S =0,0-0,5, eciam x4 H3OTPONHO, IPOXKOKAIO OHTL TAK e AHM30TPONHU 3a
npegesioM 3eMiH, KaK OHO HAGII0RAJ0CH BOAM3N 3eMIM, M TOTAA PACCEAHHE HOIHKHO
GEICTPO YBEIMIMBATBLCA C paccrogHmeM oT COJHIA. OTA KOJIMYeCTBEHHHIE XapaKTepu-
CTHKH MOTYT OHTH JIeTKO OGHApYeHH NpW HaOIIOAeHHAX YacTHIl, HoJel M IIA3ME
3a Npefe oM OpGUTH 3eMIIH.

APPENDIX 1
Particle diffusion in a radial wind

Consider the solution of the Fokker-Planck equation (1) for the probability distribution
W(r, t) for the special case that «;; is isotropic and subject to the boundary conditions (13)
and (16). Taking v and « to be uniform over r and ¢, introduce the variables s = v¢/x

and { = vr/x. Then
ilei{y@g—wﬂ (1.1)

Wir, t) = SE)P()

The equation is immediately separable into

Put

S+ wS=0 (1.2)
and

where o is the parameter of the separation and is taken to be real and positive. From
(1.2) we have

S(s) = exp (—ws) (1.4)

The solution of (1.3) can be expressed in terms of confluent hypergeometric functions. It
is more convenient for our present purposes, however, to consider the characteristic
solutions.

Let

PO = ZOA”§OC+7A (1.5)
The indicial equation is
a(e+1)=0
We reject the case « + 1 = 0, since W(r, £) must be finite at the origin, obtaining, then,
3— 6—5
P, 0 =0 [1+1+12 204 82
6 36
6w,® — 43w +30 | 68w® — 189w 4-90 ]

+ 720 ¢+ 10800 et (1.6)
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for any given value of . Here C(w) is an arbitrary constant to be determined by the later
normalization of P({). Note, for later use, that P(0) = P'(0) = C(w). Using (1.6) to
define the characteristic solutions of (1.3) we have

Wi, ) = glanP(wn, 0 exp (—w,s) (L7)

where the o, are characteristic values chosen such that
P(w,, vR/x) = 0, (1.8)

automatically satisfying the boundary condition (1.6).

Now write (1.3) for P(w,, {) and multiply by {2 exp (— {)P(w,, {); then write (1.3) for
P(w,, {) and multiply by 2 exp (—{)P(w,, {); then subtract the two equations. The result
may be written

di’C [ exp (—D(PPY — PyP)] + (w0 — ) exp (—L)PoPy = O

Integrate from { = 1 to { = Rv/« and recall (1.8). The result is
Rolx
(w, — wa)f d{ (2exp (—OP,P, =0, (1.9)
0
which establishes the orthogonality of the characteristic solutions for a # 5. Then put

s =0 in (1.7), multiply by £ exp (—{)P(w,,, {), and integrate from { = 0 to { = Ru/«.
Adjust C(w,,) such that

Rol«
[ dt 2 exp (~0P¥@n, D=1 (1.10)
0
The result is
Rv/x
a, = L d{ % exp (— ) P(w,,, OW(r,0) (1.11)
For the initial conditions (13),
v® v v
W = 73 exp [—— - (R — h)} P[wm, p (R — h)] , (1.12)
so that
8 v
W(r, t) = s exp [— p (R — h)]
© 2
X3 P [w,,, Z(R— h):| P(w,,, ”—’) exp (— Dl ’) (1.13)
n=1 K K K

For v3t/x of the order of one, or more, the first two terms in the series give an adequate
approximation.



THE PASSAGE OF ENERGETIC CHARGED PARTICLES 35

For the present problem, wherein % < R, note that
— — 2
P [w,,,'i(R — h):l ~ P’ [w,,, (R— h)]M 10 {[”(R—-'i)] } (1.14)
K K K K

Numerical integration of (1.3), beginning with (1.6) at { = 0, yields the following special
cases.
(a) For vR/x = 1'115, w; = 10, w, = 32. The functions P(w;, {) and P(w,, {) are given in Table 1
with the normalization (1.10). The special values are P'(wy, Rofx) = —6'90, P(w., Rofx) = 11-8.

(b) For vR/x = 553, w, = 1, w; = 2-16. The functions P(w,, {) and P(w,, {) are given in Table 2
with the normalization (1.10). The special values are P'(wy, {) = —1:27, P(w,, ) = +1-64.

For the special case that vR/x = 0, it is easiest to go back to equation (2), which reduces
to
ow 19 ( £ BW)
or £20¢ o0&

with 7 = «t[R%, & = r/[R. The general solution of this diffusion equation can be written

@1.15)

Wir,t) = é ilb,, sin nw§ exp (—nPn?r) (1.16)

where

b,=2 fl d¢ & sin nwé W(r, 0), 1.17)
o

subject to the condition that W be finite at the origin and satisfy (16). For the initial
condition (13),

® mr(R — k) . nmr ( nawzxt)
W= i 2 g g R (- ) 9
h 2 . har nzv-rzxt)
A —1y—L —_ —
o o g( 1)™n sin = exp( = (1.19)

fork <€ R.

The probability distribution W{(r, t) is plotted in Fig. 2 for the three cases Ru/x = 0,
1-115, 5-53. The time at which W{r, r) reaches a maximum at r = 0 is plotted in Fig. 3
in units of R%/«, along with the associated maximum value of W{(0, ), using the first two
terms in the series for the approximation. The subsequent asymptotic decay times w;R%/«x
are also given. The time for maximum W/(0, ¢) is plotted in Fig. 4 in seconds for v = 400
km/sec and for various values of R and «.

Now if the region r = R were in an infinite space filled with cosmic rays with number
density N0 and an isotropic distribution of their velocities, w, then under steady condi-
tions it is readily shown from solution of (1) with dW/dt = 0 that the density inside r = R
is Ny exp [—v(R — r)/«]. Keeping this fact in mind, note that the flux of isotropic cosmic
ray particles inward across r = R is Nyw/4, so that in the time interval (¢, ¢ + dt) there
should be introduced 4wR? X }N,w dt particles at the depth % (corresponding to about
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one mean free path into the diffusing region). Summing over the probability distribution
of all such particles introduced prior to the time ¢ gives the steady distribution Ny exp [—v X

(R - h)/K],

¢
47R% X %Now f duW(r,t — u) = Nyexp [—o(R — h)/«] (1.20)

This equation serves to determine the correct effective value of . For & < R it is readily
shown from (1.19) for the special case v = 0 that

h (=)t  nar ok

14
f duW(r,t — p) =

2WKF n=1  HT R~ 4n«R?
Hence, (1.20) gives
h— 4k
" Rw

The usual elementary definition of « in terms of the particle velocity w and effective mean
free path A is « = 34w, yielding # = 4/3 in this special case. Another example is given
in the Appendix 2, where particle diffusion in a one dimensional wind is given.

TABLE 1 TABLE 2
Rofe = 1-115 Rofx = 5-53
P(wy, D) P(ws, §) Pws, §) P(w,, §)
14 w; =10 w, = 32 ¢ w; =1 w, =216
0 3-08 592 0 0-147 0-269
0-10 3-33 6-21 05 0-233 0-407
0-20 3-52 5-86 1-0 0-345 0-527
0-25 — 5-45 12 0-397 0-558
030 3-59 4-86 1-4 — 0-575
035 — 414 1-6 0-512 0-578
0-40 3-52 331 2:0 0-635 0-521
05 334 +1-48 24 0-761 0-373
0-6 3-04 —047 2-8 0-878 +0-156
0-7 2-61 —1-95 32 0-971 —0-167
0-8 2:07 —243 36 1-020 —0-483
0-85 — —243 3-8 1-025 —0-631
0-90 1-46 —2-31 4-0 1-010 —0-766
1-00 079 —1-48 4-4 0-914 —0-903
1-10 0-105 —0-21 4-6 — —0-903
1-115 0 0 4-8 0-710 —0-822
52 0-372 —0-497
5-53 0 0
APPENDIX 2

Particle diffusion in a one dimensional wind

The problem of the diffusion of a cosmic ray particle upstream through a wind is
illustrated very simply by the one dimensional wind, in, say, the x-direction. Some of the
properties of this upstream diffusion are exhibited clearly in the linear one dimensional
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flow whereas they are obscured by the convergence of space toward the origin in a radial
flow. The Fokker-Planck equation may now be written

ow ow a( aW)

'Tt-"]'v'-é;c-:gc K—a—;' (2.1)

Consider the solution of this equation in x > 0 for uniform v and «, subject to the boundary
condition that
w(0,t)=0 22
and the initial condition that
W(x, 0) = (x — h), 2.3)

representing a single particle entering the region x > 0 and being scattered after pene-
trating a distance h. Let Q(x, p) represent the Laplace transform

O, p) = f dt exp (—pt)W(x, t) 2.4)
) 0
of the probability distribution W(x, t). Then the transform of (2.1) gives
a0 0
pQ+v Fi i Wi(x, 0) 2.5

The solution is

O(x, p) = A(exp s;x — exp 5px)
1 2z
+ prep—y fo duW(x, 0)[exp so(x — p) — exp s,(x — w)] (2.6)

where A is an arbitrary constant and the form of the solution has been chosen such that
Q(0, p) vanishes and (2.2) is automatically satisfied. The quantities s, and s, are

$12= 5 [1 £ (1 + 4xpfo?)?] @7
and
dwep\ 172
5 — 5y = % (1 +§) 2.8)

Introducing the initial condition (2.3) leads to

O(x, p) = A (exp 5;x — exp Spx)

1

+ oy [exp sy(x — h) — exp s;(x — h)] (2.9)
Note that 5; > 0 and s, << 0. Then the constant 4 is determined by the requirement that
Of(x, p) remain finite as x — oo and

Q (x’ p) - KCXP SoX

G = s TP () — exp (—sih)] (2.10)
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Inverting the transform, and skirting the branch point in s; — s, at p = —v%/4« so that
the integrand is single valued, leads ultimately to

This expression W(x, t) is the Green’s function for (2.1) subject to the boundary condition
(2.2). From it can be generated the probability distribution for the introduction of particles
in any general pattern in space and time.

The probability II that the particle is still in the region of diffusion after a time ¢ is

I = f dx W(x,t) = {1 —erf |:(4 t)j/lzjl — exph—: [1 —erf [ﬁzjﬂ} (2.12)

For small ¢ (dxt < h?),

2.11)

rxt \1/2 h? hv
H(t)"’ 1-— ( hz) exp ("" 4_ki) (l —+ €xXp :) (2.13)
For large ¢
k \172 hv vl
I(z) ~ (1—7—;27) (1 — exp :) exp (— -4—K) (2.14)

If particles are introduced steadily at x = % at a rate Nyw/4, as would be the case for
an isotropic distribution with density N, outside (x < 0), the distribution after a long time
approaches the steady value

1 ¢ 1w vh ) ( vx)
m(x) —ZNow J‘_wd,u Wix, t — ,u)-—ZN(,; (exp:— 1)exp{— —)> (2.15)
which is, of course, precisely the stationary solution of (2.1). In order that m(0) = N,,

as it would for an jsotropic particle distribution in x < 0, we must put

vh 4v
exp—-—l—;,

or since vh/x <L 1,

i, (2.16)

Wl N

which is the same result obtained in Appendix 1 for the spherical case.
It is instructive to take a brief look at the form of the probability distribution W(x, ¢).
The distribution is essentially a wave, which starts as a very sharp spike at x = A when
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t = 0, and progresses upstream from there, broadening and dying out as it goes. Consider
the situation that 4 is small compared to the distance x, appropriate to the problem of the
diffusion of cosmic rays into the solar wind. Then define the dimensionless space and
time coordinates

(2.17)

and the parameter

w=— (2.18)

We are interested in values of x such that vx/« is not less than O(1). Hence, since > 1
and vx/xk = an, it follows that o < 1. In terms of %, # and « (2.11) can be written

= gt - (- [- €222

The maximum of this function, where dW/dx = 0, lies at the point where

artn—1_ (....1?)
m7+??+1~exp K

Since «r and n are both large compared to one, it follows at once that #/r must be very
small compared to one, permitting expansion of the exponential in a power series. Keeping
terms first order in 7/~ in the expansion yields the quadratic

4o —2r=0

from which it follows that the maximum has the position

ar g ]2
=S+

For intermediate times when, 72 = 1/¢2, the maximum is at # == 1/a. For late times,
72 > 1/a®, the maximum approaches the limiting position # = 2/a, in a manner given by

the asymptotic relation
2 2 1
1~z 1= o ()]

For such values of time (2.11) may be approximated as

v~ o (2] [ (-]

so that the profile  exp (—a#/2) is stationary in space and decays away essentially
exponentially with time. The crest of the probability wave is held at x = 2«/v by the
sweep of the wind. Only the exponential tail of the wave extends to larger values of x.
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APPENDIX 3

The energy loss of a cosmic ray particle diffusing in through the solar wind

Consider the solution of the Fokker—Planck equation (4) for the probability distribution
U(r, t, T) subject to the boundary condition (16) and the initial condition

_ 0 — (R—WIXT — Ty
Ur,0,T)= (R — ) (3.1)
representing a spherical shell at r = R — & containing one particle with an energy T,;
R ©
41-rf dr rzf dT U(r,0,T)= 1. (3.2)
0 0
In terms of s = v%/k and { = vr/« (4) may be written
ou. 2n1 0 l: N ( ):I
& =3t ag [f(E - G

upon ignoring the energy dependence of n and «.
The time dependent problem may be treated using the Mellin transform over the
energy 7,

M, t,q) = f Y AT T U, 1, T) G.4)
0
Then assuming that U(r, T, t)T° vanishes as T — oo for all ¢ > 0, the Mellin transform
of (3.3) is
oM 2n(q—— 1) [ . (aM ):I
- T - M + §23§ e Fia M (3.5)
in which we put
M(r, g, t) = G({) exp (—ws) 3.6)
where
_d*G 2 \dG 2 n(g — 1)]:
O—dcz—l-(g l)d_€+{w §[1+ 3 G, (3.7

which is a differential equation of the same form as considered in Appendix 1. Its solution
is readily effected by the methods given there.

Fortunately the stationary solution of (3.3) is sufficient for the present purposes, with
the boundary condition (17), which states merely that all the particles are introduced with
an energy T, at the boundary r = R and escape freely from that boundary thereafter. It
is readily shown, if

U(r, T) = f(DRQ) (3.8)
and*

7 dT(Tf) (3.9)

* It is easily shown, by replacmg ix with @ in (3.9), that any spectrum of the form T-¢ fed in at r = R
is preserved throughout the region.
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that

Hence, if U(r, T) is to be finite at the origin, the solution is of the form
T + o0 T :
Utr, T) = 7“] do g(«) exp (—ioc In F) JF, [2 (1 + ’-';—“) 02 c] . (G.1D
— o

where , F; represents the confluent hypergeometric function. Inverting the Fourier transform
and using (9) yields

Fi2(1 + inaf3); 25 1]
1201 + inwf3); 25 ]

+ T
Uur, )= %f do exp (—iac lnF) (3.12)
- 00 o

To determine U(r, T), we must evaluate the integral on the right hand side of (3.12).
It is readily shown that (3.12) reduces to

UGr, T) = % 8 (ln %) = N(T — T, (3.13)

in the limit as Rv/x — 0. This demonstrates the obvious fact that there is no deceleration
in the limit as Rv/x vanishes. At the opposite extreme, Ruv/x > 1, use the asymptotic
expansion for the confluent hypergeometric function, obtaining

+ o0
ur, 7)= %exp (— %7) doexp (—iaS)I'(2 + i2na/3)

—

x F2(1 + inaf3); 2; 1) [1 + 2—"3-'5 (1 + &;’_0_‘) % + O(Kz/Rzuz)] (.14)
where
2n/3
sia [T ()] ass
To \ «

It will be sufficient to evaluate U(r, T) in the neighborhood of the origin, since present
observations are confined to the inner solar system. The first term in the asymptotic
expansion is readily integrated. Write the gamma function as an Eulerian integral of the
second kind, and reverse the order of integration. Then

N, Rv [*
U(o, T)~-2—ﬂ‘11—,exp (— ;—) J; du p exp (—up)
+ o
XJ daexpli—ia(S—%’zlnp)]
zor (=) [ denesp 08 (5= ms)
T SXP ~ wduuexp( u)o S—3lnu

() () e - (7))
2nT0 p To exp Tc— 1+ 'i;o (316)
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where now Rv/x > 1. The error involved in this asymptotic form may be seen from the
fact that the asymptotic U(0, T) does not vanish identically at energies above T,. The
magnitude of the error is demonstrated by

3N, (Rv)2 ex ( 2Rv)

2nT) \ « P Tk

which is small for Rv/x > 1, of course. The asymptotic energy spectrum (3.16) is plotted
in Fig. 5 for the special case that Rv/xk = 5 by way of illustration.

The mean particle energy at the origin is defined by (18). Using (3.16) it is readily
shown that

U@, Ty ~

2 + 2n/3, 1)

=T, (Rofk)*#[1 — (1 + Rv/x) exp (—Rv[x)]

(3.17)

z
where y(a, x) represents the incomplete gamma function, J' dt t*71 exp (—1). The mean
0

energy (T is plotted in Fig. 6 as a function of Rv/« using the asymptotic form (3.17) for
large Ro/x. The interpolation for intermediate Rv/x is based on (3.17), and (T) = T at
Rofk = 0.

APPENDIX 4

The energy loss of an energetic solar particle diffusing out through the solar wind

Consider the solution of the Fokker—Planck equation (3.3) under stationary conditions,
neglecting corrvective transport (which is small if Ro/« < 2), for the probability distribution
U(r, T) subject to the boundary condition (16) and (28). Separating the variables as in
Appendix 3 it is readily shown that the general solution, subject only to the condition
(16) is

U, T) = %‘1’/2 f_+:doc C(x) exp( —iaIn —%)
X {lker;(pL1'?) + i keiy(p{i/®)][bery,(pL32) + i beiy(pLy/?)]
— [bery(pC®) + i bei(pl/®]ker; (pLy®) + i keiy(pLYH]} 4.1)
where { = rv/k, {;, = Rv/x, and p = (8na/3)!/2. The function C(x) is arbitrary, and is to

be fixed by the boundary conditions. Introducing (28) and inverting the Fourier transform
yields

12 1/2 —i
8n) Nvo’2 exp (—in[4) “2)

Cle) = — (=
@) ( 3)  8mT,[ber,(p073) + i beiy(p0/3)
This form for C(«) in (4.1) then yields the particle distribution over space and energy.

It is sufficient for the present purposes to consider the particle distribution W(r) over
space

W(r) = L " arue, T (4.3)



THE PASSAGE OF ENERGETIC CHARGED PARTICLES 43

and the mean particle energy (T given by
W(r)T) = fw dT T U(r, T) 4.4)
0

Integrating (4.1) over T from T = 0 to T = oo leads to the integral

erw d (ln %) exp (—ia In -]TT) = 2mwd(a)

0

—® o

Ima

Branch Point
Re a

F1G. 10. A SKETCH OF THE CUT &-PLANE AND THE CONTOUR AROUND WHICH THE INTEGRATION
OF (5.1) EXTENDS IN THE CONSTRUCTION OF (5.6).

The integration over « then gives

W) = — (- - —) 4.5)

This same result is readily obtained by integrating (3.3) over 7, yielding

Ka(rzaW)zo’

2or\ or
which, when solved subject to the condition that there are N particles per second intro-

duced at the origin, yields (4.5).
To compute (T) multiply (4.1) by T and integrate from 7 = 0 to T = T,*. Note that

iT,
i+ o
In order to carry out the integration over « it is necessary to note the branch point in the
integrand of (4.1) at « = 1, suggesting that the complex a-plane should be cut along the
negative real axis. In order that the integral converge as « — — oo, it is necessary to in-

tegrate along a contour lying below the cut, as indicated in Fig. 10. This is easily demon-
strated by putting « = s exp (—iw) in the asymptotic forms of the Bessel functions of

To T
T —ialn =) =
0dexp( zoch)

0

* There are no particles with energy higher than 7.
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large argument. In fact it is readily shown that the integrand goes to zero exponentially
as infinity is approached in any direction below the real axis. It follows that if we should
close the contour with a semicircle of infinite radius below the real axis, the integration
around the semicircle gives zero. It follows from Cauchy’s theorem that the integral is

given by the residue of the pole at « = —i enclosed by the contour. The result is
To NvT,8n 1 I(p'?)
T UG, =——°——{K 172y _ 1/2 _L_J .
[Farrue, n=12%7 7 | K = K o “.6)

in terms of the radial variable p = (8r/3){. The average particle energy is

1/2
oV

(T)=T, ; [K1(P1/2) — Kl(Pol/2)11(P1/2)/I1(P01/2)] 4.7

(1 — plpo)
In the limit as R — o0, this reduces to

(T) = Top**Ks(p?) (4.8)
at all finite r.
APPENDIX 5

Anisotropic diffusion

When the scattering frequency » is small compared to £, the particle diffusion is limited
to the one dimensional space along the magnetic lines of force. The diffusion coefficient
is given by (29). For the idealized case that the wind is uniform around the Sun the field
density B(r, 0, ¢) at a point (r, 0, ¢) out in interplanetary space is related to the field
B(a, 0, $*) at r = a near the Sun by

¢* =¢ + rofv, (5.1)

B(r, 6, $) = B(a, 6, $%) (;’)2 [1 + ('“’ iin e)uj (5.2)

The line of force through (r, 6, ¢) is given by ¢* = constant in (5.1). Arc length along
the line of force is

ds = dr [1 + ("" iin e) 2]1/2 (.3)

The relative cross sectional area 4 of a tube of flux is inversely proportional to B. The

particle flux along a tube of flux is —A4x9N/0s so that the accumulation at any given point
is
oON 0 ( 3N)

There is in addition the accumulation from the divergence of the convective flux vN, so
that altogether
1
o _13 (o

P ) — li (r*»N)

r2or
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For a uniform diffusion coefficient along the tube of flux (d«/ds = 0) this reduces to

ON 1[0 u? aN) ¥ ad ., }
=i ln () ~ @ G4
where
H 2
1 (w sin 0) (5.5)
v
_ rosin 0 (5.6)
v

Thus u is distance measured in units of the distance (v/w =~ 1 a.u.) out to where the spiral
makes an angle of 45° with the radial direction, and ~ is time measure in units of the time
to diffuse the unit of distance v/w.
For stationary conditions (N/dr = 0) integration of (5.4) yields
1 in 0
Nu, 6) = Noexp{—i’(R —9 [1 +3 (“’S’n
K

)2 (R®+rR+ r2)]} 6.7

for the boundary condition that the cosmic ray density has the uniform value ¥, at r = R
and there are no sources or sinks in r << R.

Consider the release of a burst of n particles/steradian from the Sun at time ¢ = 0.
Up to a time 722 1, the particles are close to the Sun (¥ < 1) and the Fokker-Planck
equation (5.4), reduces to (1.1) whose solution was discussed in Appendix 1 and section 3.
Anisotropy plays no role in the radial diffusion of the particles in this initial period because
the field, along which they are diffusing, is radial*. Only when u becomes greater than one
(x=2 1 at about the orbit at Earth) and the spiral field significantly oblique does the
anisotropy begin to make a difference in the radial progress of the particles. This occurs
when 7 becomes greater than one. For 73> 1 the oblique path at large » impedes the
outward diffusion so much that the particle density at smaller # becomes nearly uniform.
Hence the particle density at small u becomes independent of the form of the diffusion
term on the right hand side of (5.4) at small =. It follows that the particle density is given
approximately at all # by the limiting form of (5.4) for large u

ON 1[N v 0
LA (58

Ko sin 6 du

or W
for 7> 1.

The effect of convection has been discussed in previous sections, so there is no reason
to include it again here to complicate the effects of the anisotropy. In the limit of small
wind velocity the convective term, with the coefficient v%/xw sin 6, drops out of the right
hand side of (5.8) and the equation simplifies to

aNN 1 02N
o =5 o

* The field prevents the particles from spreading laterally around the Sun, of course.

T It is readily shown that in order of magnitude v?/xw = (v/w)(v/wL). For the actual wind L =~ 0-1v/w
and v/w = O(107%), so that v*/xw = O(10~%). The form (5.9) is valid until a significant portion of the
particles reach a distance u given by (xw/v?)*/* which is of the order of 3 a.u. for « = 10? cm?/sec and
v = 300 km/sec. Thus conditions in the wind inside the orbit of Earth often approximate to the limiting
case of kw[v? — o0.

(5.9)
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It is easy to show that the time independent solution of this equation can be written as
N, 7) = ul/? f do ol f(0)J,(0u?) + g(o) _y;4 (0u?)] exp (—4a®7) (5.10)
0

along any given line of force. The functions f(¢) and g(o) are to be determined by the
boundary conditions, which are that N(cc, ) = 0 and

N, 0) = lim n 2 =9

€— © €

(5.11)

Since Jy;4(ou?) vanishes at the origin as »/2, there is no contribution to this mode by the
initial particle injection at = 0. The boundary condition N(co, 7) = 0 prohibits the
existence of the Jy, modes, as is readily shown by putting in a nonvanishing f(o) and
carrying out the indicated integration over y. So put f(¢) = 0. Inverting the Fourier-
Bessel transform then gives

254 (o sin 0\3 1
glo)= &) (—5——) pev (5.12)
so that
25/4 in 0\3 ©
Ny, 7) = T‘@% (w s; ) Y L do 034 J_y;, (0u?) exp (—4o?7)
n o sin )3 1 w )
"21‘(3/4)( v ‘) 737 &P (—'1—6; (5.13)

(see Watson‘®®). Note the flat distribution across # < 1, and the t3/4 decline of the particle
density at small u compared with the ¢=3/2 for isotropic diffusion.

It is interesting to work out the same problem in two dimensions, for a cylindrical Sun
revolving about its axis. The lines of force along which the diffusion takes place still
have the form & = vé/w where & represents radial distance from the axis, but they do
not open up so rapidly because the field density is now

B(&, ) = Bla, ¢*)% [1 " (f’ﬂ) 2]1/2

v

and the Fokker-Planck equation is

oN 190 & ON
e (a5 19

in place of (5.4), neglecting convection. Here ¢ = «Q?%[v? and & = dw(v, having the
same significance as = and u in the previous problem. For § > 1,

aNNli(_l_aN)
og~ &0 \&0g)’°
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whose solution is readily shown to be
NE ) = f do[F(o) sin 0&% -+ G(0) cos 0£%] exp (—40%g)
0

With n particles per radian injected at the origin at time ¢ = 0, it is readily shown that
N(&, 0) = (n[€)d(d — €) and

2
G(o) = 4:;‘;
and
n [w\2 1 &

The density declines as /2, compared with ¢~! for isotropic diffusion.

Finally consider the diffusion along the spiral field in a spherical wind again, with the
additional complication that the diffusion coefficient along the magnetic lines of force
has the value «; at ¥ = 1 and «,u® elsewhere, where s is a pure number. Then defining =
as (7x,0%v®) sin® 6, the Fokker-Planck equation becomes

N _1 a(,aN) 516

or wou u?&

in place of (5.9). The solution for s < 4 which is nonvanishing, but finite, at the origin is

® 2
N, 7) = u1-2/2 J; do 6 h(0) J(s_1)ja—s) (4 _6 - u(4—s)/2) exp (—o?r)
For the initial condition (5.11) it is readily shown that ’
h(o) = 2n (co sin 6)3 1
9) = 4 — s/ v ['[3/(4 — s)]e -9/t

Performing the indicated integration, it is readily shown that

n wsin6\3 1 s
NE ) = (& — 5)CH T [3/(4 — 5)] ( " ) B XP [_ m] G.17)

The density decays as t=3/¢4-%), The decline is more rapid when the diffusion coefficient
increases with radial distance (s > 0). This effect has been discussed elsewhere'® for
isotropic diffusion. The stationary solution of (5.4) for this same case k = «;u° is

1—s
3—»

2

N(u) = N, exp {— l:(usl—’ L (ug>—* — u"“):l} (5.18)

r;0(1 — 5) sin 0
for s £ 1, and

u v2k, 8in 6 vz(uz —u 2)
Nu) = N,y |— el I ]
@) 0 (uo) ex 2k;0 sin 0 (5.19)
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for s = 1, subject to the boundary condition that N = N, at u = u, = (Rw[v) sin 8. The
form x4’ is probably not of much physical interest close to the Sun (u < 1) under these
stationary conditions because the vanishing diffusion merely predicts vanishing particle
density there.

It is interesting to note that if « were of the form 1 + #2, then the Fokker-Planck
equation reduces to the form for isotropic diffusion. In this case the particles are still

r=R-— rd —r =

FIG. 11. THE GEOMETRY OF THE ENTRY AND EXIT OF AN ENERGETIC PARTICLE FROM INTERSTELLAR
SPACE INTO THE SOLAR WIND, THE HORIZONTAL LINES SYMBOLIZE THE OUTWARD MOVING
JRREGULARITIES WHICH VANISH UPON REACHING THE BOUNDARY r = R,

constrained to move along the magnetic lines of force, but the effect of the spiral on their
radial motion is exactly compensated by the increase of « with distance. The radial motion
has the same dependence upon r and ¢ as for the isotropic case.

APPENDIX ¢

Fermi acceleration in the solar wind

Consider the energy transferred to a cosmic ray particle which comes head on into the
solar wind from interstellar space and returns again to interstellar space. Neglect the
adiabatic cooling of the particle while in the solar wind. It is perhaps easiest to think of
the magnetic fields carried in the solar wind (and from which the particles scatter) as ranks
of soldiers marching steadily outward with velocity v and dissolving into nothing as they
reach r = R. This is illustrated schematically in Fig. 11, along with the trajectory of an
incoming and outgoing cosmic ray particle. The particle approaches the outer boundary
of the wind with a velocity w, at an angle 6 from the normal. It interacts with the wind
for a greater or lesser period of time, during which period it may be thought of as moving
in the frame of reference of the wind, and subsequently escapes back into interstellar
space with a velocity w, at an angle ¢ from the normal. To compute w, in terms of w,
let w represent the constant speed of the particle in the frame of reference moving with
the wind. Since w is equal to the initial velocity in the frame of reference moving with the
wind, it is easy to show that, for the nonrelativistic case,

w2 = w2 -+ 2 + 2ow, cos

The speed w is also equal to the final speed of the particle in the frame of reference moving
with the wind, so that

w? = w2 + v — 2ow, cos®
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Thus in the fixed frame of reference, in which w, and w, are measured, the change in the
square of the velocity upon entering the wind is

(Aw?), = w2 — w2 = 2ow, cos 6 + O(v®)
and upon leaving
(Aw?), = 2ow, cos & + O(v?)

If it is assumed that the velocity distribution before entering and after leaving is isotropic,
then the rate at which kinetic energy is transferred to the cosmic ray particles each of
mass M, is

w2
o .
47R fo df sin 6 X Nyw cos 0 X $M(Aw?), _ 4nR® NpT,

P1= =
f db sin 0 3 R
0

upon entering the solar wind, with a similar result for the rate of energy transfer P, upon
leaving. Hence
87TR3 N, ovT 0

PIEP1+P2="3_ R

Now while a cosmic ray particle is knocking about among the magnetic irregularities
in the solar wind, it may be accelerated by the Fermi mechanism because the magnetic
irregularities presumably have some small random Alfvén velocity v, relative to the wind.
The energy gain of the particle with velocity w and energy T is O(Tv,%/w®) per collision2®).
If the mean free path between such collisions is L, then in a time ¢, one expects wt/L collisions
and a total fractional energy gain

T _o(i

T wl

The Alfvén speed v, at the orbit of Earth is typically 50 km/sec (5 X 10~® G and 5 hydrogen
atoms/cm?®) so that with w = 3 X 10%% cm/sec and L = 107 km we have AT/T = 102%in a
typical time of 10%sec. This suggests that Fermi acceleration of cosmic ray particles is
negligible while random walking in the magnetic irregularities in the solar wind.

Fermi®” speculated that more efficient acceleration might arise if the magnetic field
contained sharp kinks. Such a mechanism was demonstrated® using magnetic irregu-

larities with sharp crests, in which case the energy increase of a particle is O(7v,/w), so that
after a time ¢

AT (v,,t

T =9 f)>1

This mechanism would lead to large, instead of negligible, changes in the energy of fast
particles in interplanetary space, with extremely interesting consequences. However, we
see no conclusive evidence in the magnetic records, such as Fig. 1, for the necessary sharp-
crested hydromagnetic waves. So for the present, the conservative assumption is that
Fermi acceleration of energetic particles is not an important phenomenon throughout
interplanetary space.



