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Abstract--The passage of cosmic ray particles and energetic solar particles through inter- 
planetary space is illustrated with a number of idealized examples. The formal examples are 
worked out from the condition that energetic particles in interplanetary space random walk in 
the irregularities in the large-scale interplanetary magnetic field. The irregularities move 
with approximately the velocity of the solar wind. The classical probability distribution is 
describable by a Fokker-Planck equation. A general expression for the particle diffusion 
coefficient K*, is worked out, including both scattering in magnetic irregularities and systematic 
pressure drifts. Magnetometer data from Explorer XVIII is presented to show the close 
average adherence of the quiet-day interplanetary magnetic field to the theoretical spiral 
angle, and to show the tendency for particles to move more freely along the field than across, 
K,, > K~. The observed fields show that the diffusion coefficient is of the order of 10el-lo** 
cma/sec, as had been estimated from earlier cosmic ray studies. A middle value of 3 x 10” cm*/ 
set suggests a cosmic ray density gradient of about 10 per cent per a.u. across the orbit of 
Earth. Direct observations of the interplanetary magnetic field afford the possibility for 
quantitative estimate of ~~~ as a function of particle energy. 

The first example to be considered is isotropic diffusion in a spherical region r < R with 
uniform radial wind velocity e for the purpose of illustrating the general nature and duration 
of the passage of a cosmic ray particle through the solar system. It is shown that the cosmic 
ray density reduction is of the order of exp (--~R/K), and, hence, that during the years of solar 
activity UR/K is not less than about 1 for protons of one Rev or so. It follows from this that the 
galactic cosmic ray particles will generally have spent several days in the solar system by the time 
they are observed. During this time they are in the expanding magnetic fields carried in the 
solar wind and are adiabatically decelerated, losing 15 per cent or more of their energy by the 
time they are observed. The energy distribution is shown for particles starting all with the 
same energy T,, from interstellar space. The incoming probability wave of a single particle is 
computed as a function of time, showing how the particle is swept back by the wind. 

The converse problem of energetic solar particles is illustrated. The solar particles may 
typically lose half their initial energy before escaping into interstellar space. The outward 
motion of the wind displaces their probability distribution outward so that ultimately the 
maximum solar particle intensity may lie beyond the orbit of Earth. The outward motion of 
the wind steepens the decline of the solar particle intensity. 

The steady-state cosmic ray intensity is calculated throughout the spherical region r < R 
supposing a uniform cosmic ray density Na to obtain in interstellar space. The calculation is 
carried out for isotropic Q, which would obtain if the magnetic irregularities were of large 
amplitude and of a scale not exceeding the radius of gyration of the cosmic ray particles, and 
for anisotropic K*, with K,, > K~, which obtains when the field is relatively smooth. (The 
observations at sunspot minimum suggest K,, > ~~ at the orbit of Earth.) The particles diffuse 
only along the spiral lines of force when K,, > K~, so their path in and out of the solar system 
is much longer than when K~, is isotropic. The result is a much greater reduction of the cosmic 
ray intensity for a given vR/IK~~I. 

There is no direct observational information on K~, beyond the orbit of Earth, where the 
intensity reduction takes place. Indirect information is available, however. There is the fact 
that the intensity of energetic solar particles at Earth often decays as t-0 with R = 15-2.0. It 
is shown that in order for this to follow, it is necessary that l~~,l cc r* with s = 04-0~5 if IQ, is 
isotropic, and s = 2.0-2.5 if K,, > K~. That is to say, if pi, should continue to be as anisotropic 
beyond Earth as it is observed to be. near Earth, then the diffusion must increase rapidly with 
distance from the Sun. These. qualitative features should be easily detectable with particle, 
field, and plasma observations beyond the orbit of Earth. 

* This work was supported by the National Aeronautics and Space Administration under research 
Grant NASA-NsG-96-60. 
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1. INTRODUCTION 

(a) General remarks 

Galactic cosmic ray particles reaching Earth must penetrate the interplanetary magnetic 
fields lying outside the orbit of Earth. Energetic particles from the Sun must penetrate 
the same fields to escape. There is no direct observational information on the fields beyond 
Earth, but a sufficient number of inferences can be made to permit a qualitative picture of 
the passage of energetic particles. This paper explores the general nature of the passage 
of energetic particles through the inferred quiet-day interplanetary magnetic fields. 

Galactic cosmic ray particles penetrate into the solar system against the outward sweep 
of the magnetic fields carried in the solar wind, ieading to a reduced cosmic ray intensity 
here in the solar system. The theoretical prediction of the general nature and extent of the 
interplanetary magnetic fields(1-6) made it possible to construct the qualitative features of 
the reductiorWr) and to connect it with the inverse problem of the escape of energetic 
solar particles into interstellar space ts). The present paper looks farther into the general 
properties of the propagation of energetic charged particles through interplanetary space, 
considering transit time, energy loss, and the outward convection of solar particles, which 
hitherto have been ignored. The various qualitative conclusions of the paper are based on 
exact calculations of idealized models of the interplanetary field which contain the essential 
physical features of the actual fields. The purpose is to point out and to illustrate the 
essential physical behavior of energetic charged particles in interplanetary space. 

It is shown, for instance, that most of the cosmic ray particles incident on the solar 
wind from interstellar space are reflected immediately back into space, with a small energy 
gain as a consequence of their head-on collision with the outward moving fields in the solar 
wind. Only a very small fraction of the incident particles diffuse into the solar wind, 
where they remain for a considerable period of time (days or weeks) and lose a significant 
fraction of their energy to the expanding interplanetary fields before returning to inter- 
stellar space. Energetic particles from the Sun are similarly decelerated before escaping 
into interstellar space. The outward convection of solar particles hastens the steepening 
of the initial t-” decline of the particle density after a flare. In contrast to this, a low 
scattering rate tends to decrease CC. 

But before going into the formal calculations which demonstrate these effects, we digress 
long enough to consider the present state of knowledge of the interplanetary fields on 
which the formal calculations are based. 

(b) Interplanetary magnetic$elds 

First of all, the theory of the solar wind predicted in the basic quiet-day pattern of the 
interplanetary magnetic field is everywhere (rather than only in isolated streams) an 
Archimedes spiral with the Sun at its origin. The theory predicted a quiet-day field of 
the order of 3 x 1O-5 G at the orbit of the Earth, based on a mean field of one gauss at the 
Sun. Second, irregularities on a scale of 105-108 km in the spiral pattern were expected 
from theoretical considerations(lps). Irregularities over extensive regions of space were 
inferred from cosmic ray observations t7-12). Recently the interplanetary fields have been 
observed directly, verifying the general spiral patterno3) and giving direct quantitative 
information on the nature of the irregularitieso3*14). 

The observations of Ness et al. are sufficiently comprehensive and important for the 
present discussion of the quiet-day field to display them in Fig. 1 from orbits 11 and 15 
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of Explorer XVIII. For detailed discussion of the magnetometer and the data the reader 
is referred to Ness et a1.(13) The variations of the interplanetary magnetic field recorded 
by Explorer XVIII are spatial irregularities transported rigidly in the solar wind blowing 
by the vehicle (the Alfven speed, with which the irregularities move relative to the wind, 
is only about 50 km/see). The plots shown in Fig. 1 were drawn by causing the pen to 
progress with constant speed across the paper (representing the plane of the ecliptic) in 
the direction of the interplanetary field at each instant of time. Thus, had the wind been 
transporting the field in the direction of the magnetic field, the line in Fig. 1 would be an 
approximate map of a line of force of the field. Instead, the line has merely the same general 
characte~sti~ direction and the same general irre~larities as the actual lines of force. 
Time is indicated along each line *. The scale of the field is indicated by the middle segment, 
labelled lo9 eV, which represents 1 x lo6 km on the assumption that the wind velocity is 
a uniform 400 km/see. The sharp reversal of the line in Fig. I(a) at about 2200,7 January 
1964 represents passage of Explorer XVIII into the field from a region of opposite polarity 
on the Sun. 

In looking at Fig. 1 there are several features which stand out. First of all, there is 
the long narrow path followed by the field across Fig. 1, indicating the close average con- 
finement of the field to the theoretical spiral angle, already pointed out by Ness et aA 
Second there is the continual presence of irregularities of all scales above the 300 see 
(1.2 x lo6 km) intervals between data samples. Third, there is the striking tendency in 
Fig. l(a) for the field to bend sharply through one radian or more at intervals of the order 
of several million km, say 2-10 x lo6 km. The field between the bends curves relatively 
gently, except for a few sharp wiggles of small scale (< IO6 km). In Fig. l(b) the field has 
the same general characteristics as in Fig. l(a) except that the sharp bends every several 
million km are missing. 

In a typical interplanetary field of 5 x lo-5 G, the radius of gyration of a proton 
moving perpendicular to the field is @28, 1.0 and 6.6 million km at 108, 10s and lOLo eV, 
respectively. These lengths are layed out in Fig. 1 for direct comparison with the observed 
scale of the irregularities in the field: It is readily seen that the lOlo eV proton has a radius 
of gyration comparable to the distance between the sharp bends in the field in Fig. l(a); 
the 10Q eV proton has a radius of gyration small compared to the distance between bends 
but comparable to the radius of curvature of many of the bends; the lo8 eV proton has 
a radius which is small compared to any feature of the large bends but which is comparable 
to some of the occasional small-scale fluctuations. 

(c) Particle motions in the interplanetary fields 
Calculations of the motion of a charged particle in a large-scale field containing small- 

scale irregularities, such as in Fig. 1, shows that a particle is most effectively scattered by 
irregularities which have a scale comparable to the radius of gyration of the particlec16). 
Particles of higher rigidity pass through each irregularity with but little deflection, The 
calculations show further that, if the irregularity does not leave a net final displacement 
in the large-scale line of force, the net deflection is still further reduced. This is because 
with no final displacement of the lines of force the deflection of the particle over the first 
displacement of the line of force is almost exactly cancelled by the deflection in the return 
displacement of the line of force. It is of particular importance, then, to decide whether 

* There is a gap of a couple of hours iu the data for orbit 11 at about 1800 hours, 6 January 1964. The 
gap is not included in the figure since it is not known in what direction to pfot the gap. 
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the magnetic irregularities each represent a net shear or displacement of the lines of force, 
or whether each displacement is followed immediately (within one radius of gyration) by 
a restoring displacement. It is interesting to note that in the field illustrated in Fig. l(a) 
the sharp bends represent a net displacement of the field so far as log eV particles are 
concerned. The return bend is removed more than one radius of gyration. On the other 
hand the radius of gyration of a lOlo eV particle is comparable to the distance between 
bends, so for these higher energy particles the net irregularity has but little net displacement 
of the line of force. 

Particles whose radius of gyration is small compared to the scale of the field irregularities 
pass smoothly through the irregularities, with their motion described by the guiding center 
approximation. The particles may be deflected from regions of strong field along the lines 
of force, but otherwise pass through freely with little or no change in their magnetic moment. 
An isotropic particle distribution where the particles are fed onto the line of force means a 
uniform particle density everywhere along the line of force under ordinary circumstances*. 
Thus particles with sufficiently small magnetic rigidity may perhaps penetrate into the solar 
system more easily than particles of higher rigidity. Low energy electrons, with their 
relativistic speed and low rigidity are particularly likely candidates for this. A 10 MeV 
electron in a field of 5 x 1O-5 G has a radius of gyration of only 6 x lo3 km. 

From the theoretical behaviour of a charged particle in an irregular magnetic field (15*16) 
it follows from the observations that 

(a) for the field observed during orbit 11 cosmic ray particles over the entire range 1O8-1O1o eV are 
scattered by the irregularities ii the spiral field. For-orbit 15 protons of lOlo eV&e scattered con- 
siderablv less than narticles at lo8 eV and below. The mean free nath alone the field between 
scattering lies in the;ange l-10 x 10’ km (except for 1Oro eV protons fn orbit 157, yielding diffusion 
coefficients of 102~-102a cm*/sec, respectively. We have no way of inferring from this the mean free 
path and diffusion coefficient far beyond the orbit of Earth, but it is interesting to note that 
these numbers are in agreement with the earlier order of magnitude estimates from cosmic ray 
ob~~ationsl”~8~10~11,11). 
(b) the scattering of loo eV protons is somewhat more effective than the scattering of lOlo eV protons 
in Fig. l(a) because the loo eV proton experiences a net change in the direction of the field at each 
sharp bend, whereas the lOlo eV particle “sees” across the interval between bends, so that for it the 
field fluctuates but experiences no net change in direction (lb). For this reason the particles below lOlo 
eV have a mean free path along the field which is comparable to the distance between sharp bends, 
and hence is much larger than their mean free path (radius of gyration) across the field. The same 
is true at lOlo eV but probably to a lesser degree. In Fig. l(b) the difference in the mean free paths 
parallel and perpendicular to the field is even more striking. 

The tendency for particles to move along the magnetic lines of force of the spiral more 
freely than across, as pointed out in (b), is an essential part of the theory(la) of the diurnal 
variation of the cosmic ray intensity at Earth. Some of the additional effects of such 
anisotropy are illustrated in section 4. 

The steady change of the spiral angle exhibited in Fig. l(b) is particularly interesting, 
since presumably it results from variations of the wind velocity around the Sun and perhaps 
with time(315). Presumably individual instances can be understood in detail as more mag- 
netic and wind information become available. 

Simpson(12) has pointed out the different time behavior of the cosmic ray density at 
different proton energies over the 11-year cycle of solar activity. We would suppose that 
the different behavior is attributable to variations in the qualitative features of the magnetic 
irregularities, mentioned in (a) and (b) as much as to variations in average field strength, 
wind velocity, and extent of the solar wind into space. 

* The exception is when a temporary constriction in the line of force chokes off the particle flow, such 
as occurs in the field through a blast wave from a solar flare(8*5’. 
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It is interesting to note from (a) and (b) that a typical mean free path L of 5 x 106 km 
along the magnetic line of force yields a diffusion coefficient K,, G l/3 CL of about 5 x 1021 
cm2/sec. From this one would expect a variation in the cosmic ray intensity of the order 
of 15 per cent per a.u. as a consequence of the outward motion of the fields, which order 
of magnitude is in agreement with the low value set by observatio@‘@). A factor of e arises 
over a distance of about 7 a.u., in agreement with the very rough estimates made earlierf5@. 

The time Z2/4~ to diffuse a distance I = 1 a.u., as in the arrival of energetic particles 
from a flare, is 104 set or about three hours. Considerably longer periods of time are 
required for diffusion across the lines of force (section (b) above). This would seem to 
account for much, if not all, of the observed delay of arrival of solar particles at Earth. 
And with (b) it suggests that the example worked out elsewhere (Parkert5), p, 228) for the 
arrival of energetic solar particles from a flare on the back side of the Sun might be extended 
to include a finite anisotropic diffusion coefficient at all radial distances from the Sun, 
instead of an isotropic coefficient beyond a certain distance with free radial passage closer 
to the Sun. 

2. FOKKER-PLANCK EQUATION 

(a) General form of the Fokker-Planck equation 

The feature of the interplanetary magnetic field which determines the nature of the 
propagation of energetic particles is the general presence of small-scale irregularities in 
the field. The irregularities appear with dimensions of 105-10’ km, which are comparable 
to the radius of gyration of typical cosmic ray particles, but which are small compared 
to the overall dimensions of interplanetary space. The irregularities scatter, or reflect, the 
energetic particles back and forth along the lines of force of the large-scale field, so that 
there is no tendency for the particles to move systematically in either direction in the frame 
of reference of the irregularities. Viewed from the large scale, then, the effect of the mag- 
netic irregularities is to cause the cosmic ray particles to random walk in the frame of 
reference of the magnetic irregularities. If the scattering is infrequent (compared to the 
cyclotron frequency), then the particles random walk back and forth along a line of force 
with little diffusion across the lines of force. The particle motion is describable by the well 
known guiding center approximation between scatterings. If, on the other hand, significant 
scattering occurs as frequently as once each cyclotron period, then diffusion across lines 
of force becomes important too. It is evident that the diffusion coefficient describing this 
random walk is a tensor quantity ~~~ with a larger vahte paralIe1 than perpendictdar to the 
large-scale field. 

The random walk of the cosmic ray particles is a Markhoff process, describable by a 
Fokker-Planck equation (see formal discussion in Chandrasekhart21)). To describe the 
random walk, introduce the classical probability distribution W(x,, t) of the particle. 
Denote the diffusion coefficient by K$$, which is defined such that -KipqaXj is the particle 
flux in the frame of reference moving with the magnetic irregularities producing the 
scattering. The magnetic irregularities move with the solar wind, of course, with velocity 
vi, so that in the fixed frame of reference there is an additional particle flux v,W of con- 
vective origin. The divergence of the total particle flux gives the accumulation at a point, 
yielding the Fokker-Planck or diffusion equation 

aw 
at+ax. -f- (WV,) - y& (Kij &y) = 0 

t t 3 

for the particle distribution W(X~, t)(5@J5p1e). 
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Now while the energetic particle is riding along with the fields in the wind, the magnetic 
fields in which the particle is moving are expanding because of the radial divergence of 
the wind. The energetic particle is cooled adiabatically*, so that its momentum p declines 
as 

1 dP i au. 
pz= 

m-_-L 
3 ax, 

and its kinetic energy T declines as 

1 dT n(T) avi 
-_=--- 
Tdt 3 ax, (2) 

where n(T) = 2 for nonrelativistic particles and n(T) = 1 for extreme relativistic particles. 
We shall work with the particle distribution over T, plotting the results for the two cases 
n = 1,2. To obtain the distribution over p, it is necessary only to replace T by p and put 
n = 1. For a radial wind of constant speed v, the divergence %,/ax, is equal to 2v/r. If 
U(xI, T, t) represents the probability distribution over kinetic energy, so that 

W(x,, t) = 
s 

m dT U(xi, T, t), 
0 

then the Fokker-Planck equation for U is 

As we noted in the Introduction, we shall be concerned with the time of passage of an 
energetic particle into and/or out of the solar system, with the energy which the particle 
may lose, and with the tendency for the particle to diffuse more readily along the spiral 
field than across. The purpose is to point out and illustrate the effects, so that eventually 
when increasing observational information permits, they can be studied quantitatively. It 
is sufficient, therefore, in this first study to compute the time of passage and the energy 
loss with an isotropic diffusion coefficient, in which case (2) reduces to 

$! + f E (r’u) - $ & [UT?(T)] - f i (Kr' ‘$) = 0 (4) 

for radial diffusion and to treat the effects of anisotropy separately. 

(b) The general d@usion coeficient 

In treating the effects of anisotropy in a spiral field etc., the anisotropic character of 
K<, must be retained. To compute the form of Kij let L be the length of the step the particle 
makes along the magnetic field Bi. Let Y represent the number of steps taken in unit time. 
Then if the particle velocity is wi we would expect that v = w,,/L, approximately, where w,, 
denotes the component of wi along Bi. The diffusion coefficient along the field is 

The radius of gyration of the particle across the field is S = w,/R where R is the cyclotron 

* Neglecting possible Fern-d acceleration (discuSsed in Appendix 6) which seems to be negligible. 

2 
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frequency of the particle in the field. Hence, the diffusion coefficient across the field is 

if the particle is closeIy tied to the line of force, v < ,R, i.e. if S < L. If on the other hand 
L< S, i.e. if the particle is scattered many times in one cyclotron period (v > a), then 
Kl r KII. A sufficient tensor representation of these effects is 

Kij E VL2 
V2di, + c2ii-2j 

v2 + !a2 

where 

(5) 

(6) 

and q and Mare the total charge and mass of the particle. This expression for Kij adequately 
describes the scattering of the guiding center of the particle. But there may be a net 
streaming as a consequence of a pressure gradient in the particle density, or a drift of the 
guiding centers. To include these we note ~2) that the net particle streaming ui at a point 
in a large-scale field is 

1 (7) 

for particles of mass M and charge q, wherep,, andp, denote the particle pressures parallel 
and perpendicular to Bi, dv,/dt is the acceleration of the solar wind and eijk is the usual 
permutation tensor, equal to f 1 according as (ik is an even or odd permutation of 1, 2, 3 
and zero otherwise. The acceleration term dv,/dt can be neglected under most circum- 
stances, as can the cosmic ray anisotropy* pll -pl for the present purposes (see discus- 
sion@)). It is sufficient for present purposes to neglect the changes in particle energy 
@4w2, so that pI s QiVMw2 varies only with N. It follows that the streaming ui can be 
written 

(8) 

Then since v2L2 = w2/3, we may represent this pressure drift by the artifice of the diffusion 
coefficient 

vZL2 
‘$5 = + - EijkQZ, 

!z 

Combining (5) and (9) we have altogether 

(9) 

K.. N yLa [V2di, + fiiQj + VEirkfik] 
13 - v2 + fJ2 

as a sufficient approximation to the diffusion coefficient for particles with cyclotron 
frequency IR and random walk frequency v. Each of the terms in (10) is correct for those 
values of v/Q for which the term is non-negligible. The expression is approximately correct 

* There. are brief periods where the anisotropy ~8mm~ is sufficiently large that it should not be neglected. 
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for both non-relativisitc and extreme relativistic particles. We employ (10) for the discussion 
of the passage of energetic particles through interplanetary space. 

3. PASSAGE OF COSMIC RAY PARTICLES INTO THE SOLAR SYSTEM 

(a) The computational model 

The physical model employed in the calculations to illustrate the time of passage and 
energy loss to cosmic rays and solar particles may be fairly simple, since neither effect 
depends critically on the details. We shall ignore all the interesting complications that 
may occur in the outer regions of the solar wind(4y11) and shall suppose that the solar 
wind blows radially with constant velocity u and sweeps back the cosmic rays to a distance 
R, beyond which is free interstellar space where the cosmic ray density is isotropic and 
uniform with N, particles/cm 3. The discussion will be limited to non-relativistic particles 
and extreme relativistic particles so that n(T) may be taken as a constant, with a value 
n = 2 and n = 1 respectively. 

To obtain an idea of the order of magnitude of the time of passage and the energy 
loss, let K represent the cosmic ray diffusion coefficient, which for the present discussion 
we take to be isotropic and uniform out to r = R. It is readily shown’5@) that the cosmic 
ray density here in the inner solar system is reduced to N, exp (-Rv/K) by the outward 
motion of the wind. The observed amplitude of the II-year variation of the cosmic ray 
intensity shows that RV/K is probably of the general order of unity. In a time t a cosmic 
ray particle diffuses a distance (&t)“‘, so that to arrive in the inner solar system from 
r = R requires a time 

t=_-_=O R R Rv 

4V K 0 4v ’ (11) 

which is just one fourth the time it takes the wind to reach r = R. The solar wind velocity 
is, say, 400 km/seP) so that if R is small as 5 a.u. the time t is 5 days, in order of magni- 
tude. There are suggestions (is) that R may perhaps be as large as 40 a.u., giving t of the order 
of a month. These diffusion times are to be compared with the one hour and the five 
hours, respectively, in which a cosmic ray particle would traverse the same distances if 
there were no irregularities in the magnetic fields. 

The characteristic time t, in which the kinetic energy of a particle falls by a factor of 
e is readily shown from (2) to be 

1 1 dT 
-= --- 
t, T dt 

24 T) v 
_-- 

3 r 

in a uniform radial solar wind with velocity v. Assigning R as the characteristic value of 
r, and using (11) gives 

n(T) t 
tE=- 

6 (12) 

So by the time a particle arrives here its energy is the fraction exp (-t/tE) = exp (--n/6) of 
the energy which it had in interstellar space. For a non-relativistic particle n = 2 and the 
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energy is O-7 the initial energy; for an extreme relativistic particle the energy is 0%. 
These rough estimates are conservative, as will be seen later when the complete calculation 
is carried out from (4). Both the individual particle energy loss and the depression of the 
particle density contribute to the observed reduced particle intensity. The energy loss to 
energetic solar particles diffusing out through the solar wind into interstellar space is 
considerably greater than the energy loss to a galactic particle first arriving at Earth because 
the solar particles spend a larger fraction of their time at small r. 

The formal calculations in this section will be carried out with the assumption that 
v s St so that (10) reduces to the isotropic tensor* &vL 2. It will also be assumed that Kdi 

is inde~ndent of particle energy T and uniform inside r = R. The particle diffusion over 
azimuthal angle 4 and polar angle 8 is not of prime interest? so the computational model 
used here, including the cosmic ray intensity at r = R, has spherical symmetry. So the 
calculations will be restricted to the radial particle distributions U(r, t, T) and W(r, t), 
omitting dependence on 8 and $. The restriction to radial dependence may be achieved 
in two ways. We may either introduce the particles in a spherically symmetric manner so 
that U(r, 6, (b, t, T) is automatically independent of 0 and (6, or if we like, we may introduce 
a single particle at a given point and define U(r, t, T) as the integral of the resulting 
U(r, 8,& t, T) over @ and (rr, 

U(r, t, T) = 
s s 

2vd# *de sin 8 U(r, 8, (b, t, T) 
0 0 

In either case the distribution U(r, t, T) satisfies (4). The same is true for W(r, t). 

(6) Time ofpassage 

Suppose that a cosmic ray particle from interstellar space crosses r = R into the solar 
system and is scattered by an irregularity (at time t = 0) in the magnetic field after having 
penetrated a radial distance h. Obviously la is of the order of the scattering length L, on 
which we will have more to say later. At the instant of the scattering the probability 
distribution of the particle is a Dirac delta function in space, located at the point of scattering 

W(r, 0) = 
6[r - (R - h)] 

4rr(R - k) ’ 

s 

R 
4?r dr r2W(r, 0) = 1 

0 

Subsequently W(r, t) is determined by the Fokker-Planck equation 

(13) 

05) 

The particle is assumed to escape freely back into interstellar space when it returns again 
to r = R, so there is the boundary condition 

W(R; t) = 0 (16) 

* The formal computations will be valid even if wij is anisotropic provided only that K+$ is symmetric 
and its principal axes lie along the coordinate directions. 

t Theoretical examples of diffusion over + and @ may be found elsewhere(S). 
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The formal solution of (15) subject to the initial condition (13) and the boundary condi- 
tion (16) is worked out in Appendix 1. In Appendix 2 the same problem is considered in a 
one dimensional space because the result can be expressed in closed analytical form. The 
probability wave of the particle diffusing into the solar system against the outward sweep 
of the wind is shown in Fig. 2 for the three cases of no wind RV/K = 0, a moderate wind 

I 1 I j / / I ] I 

0 0.2 0.4 
r/R 

06 0.8 

-4 

0 

FIG. 2. ‘bI13 PROBABILITY DISTRIBUTION w(r, t) IS PLOlTBD FOR THE TIMES d/R* = 0.05, 0.1 
AND 0.2. THE HEAVY LINES ARE FOR NO SOLAR WIND, V = 0: THE BROKEN LINES ARE FOR A 

MODERATE WIND RV/K = 1.115: THE LIGHT LINES ARE FOR A VERY STRONG WIND, RV/K = 5.53. 
THE VALUFS OF RV/K AND d/R2 ARE SHOWN IN THE PARENTHESES ASSOCIATBD WITH EACH CURVE. 

RV/K = l-115, and a strong wind RV/K = 5.53. A comparison of the three sets of curves 
shows that (a) W(r, t) is reduced by the outward sweep of the wind, (b) the position of the 
maximum @IV/& = 0) is moved outward, and (c) the duration of W is reduced. In Fig. 3 
are plotted times at which W reaches a maximum at r = 0, the maximum value which 
W reaches at r = 0, and the characteristic time of the subsequent exponential asymptotic 
decay, as a function of wind strength Rv/K. 

The probability that a particle be observed at (r, t) is proportional to W(r, t), obviously. 
So W(0, t) is a measure of the probability that the particle be observed in the inner solar 
system. Hence the most probable time for a particle to be observed is the time at which 
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IV(0, t) is a maxims, plotted in Fig. 3. The time of maximum w(O, f) is a measure of 
the time that observed cosmic ray particles have spent in the solar system prior to observa- 
tion. In Fig. 4 the time in seconds to the maximum W(0, t) is plotted as a function of 
&J/K for a solar wind velocity of v = 400 km/see and for various values of K in the expected 
range of 10at-lOea cm2/sec. It is readily seen that for &V/K of the order of one, the time the 
average particle spends in the solar system prior to observation is of the order of days. 

1 ’ 
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FIG. 3. THE MAXIMUM VALXJE3 OF W(0, t) IS SHOWN BY THE BROKEN LINE. THE TIME x*/p AT 

WHICH W(0, t) REACHES ITS MAXIMUM IS SHOWN BY THE SOLID LXNE. THE ASYMPTOTIC TIME 

IN WHICH W(r, t) DECAYS BY A FACTOR OF c? Is SHOWN BY THE DOlTED LINE. 

Higher solar wind velocities for the same value of RV/K reduce the time somewhat, as may 
be seen from (11). 

As was noted earlier the period of days which the particle spends in reaching the inner 
solar system is to be compared with the transit time of an hour or so in the absence of 
interplanetary fields. The particle remains in the solar system for days, instead of an hour, 
say 25 times longer because of the fields. Combining this with the fact that the cosmic 
ray density is lower by perhaps a factor of e in the inner solar system, leads to the con- 
clusion that not more than about 1O-2 of the number of particles which would pass through 
the inner solar system in the absence of interplanetary fields actually succeed in getting 
here. The other 99 per cent, or more, are excluded from the inner solar system by the out- 
ward sweep of the fields in the solar wind. We will have more to say on this later when we 
consider the total energy inventory of cosmic ray particles from interstellar space which 
run up against the outer boundary of the solar system. 

(c) Energy loss during passage 
To illustrate the energy loss of the cosmic ray particles which diffuse into the solar 

system consider the simple situation in which particles with energy T, and density N, fill 
space everywhere outside r = R. These particles are free to enter the region of diffusion 
r < R and escape freely from r = R following diffusion. Hence their distribution U(r, T) 
over r and T satisfies the boundary condition 

U(R, 7’) = N&T - To) (17) 
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The distribution in r < R is determined by (4) with XJ/at = 0. The appropriate solution 
of (4) is worked out in Appendix 3. If RV/K = 0 it is obvious that U(r, T) = U(R, T). 
For RV/K > 1 the asymptotic form of the energy distribution U(0, T) in the inner solar 
system is readily obtained, and is plotted in Fig. 5 for the special case RV/K = 5. Figure 5 
serves to illustrate the form of energy spread in the inner solar system where the particles 
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Frci, 4. THE MOST PROBABLE TME t max FOR A PARTICLE TO BE OBSERVED AT THF. ORIGIN AFTER 

CROSSING THE OVTER BOUNDARY r = R OF THE DIFFUSING REGION. Tie SOLAR WRW VEWCITY 

IS TAKEN TG BE 400 km/see. TKB D~~SION COEFFICIENT K CORREWGNDING To RACK CURVE IS 

GIVEN IN ems/See. THE VALUE OF R IN ASTRONOMICAL UNITS IS INDICATED ON THE BROKEN 

LIMBS. TEE! QUANWCY RV/K IS THE LGGARlTHhi OF TWX cy)S~lC RAY INTENSITY iVIN, AT THE ORIGIN. 

are observed, which must be unfolded from any observed spectrum if it is desired to obtain 
the energy spectrum of the cosmic rays in interstellar space. 

The mean energy (T) of the particles arriving at the origin is given by 

s To dTTU(0, T) 

lT)= OTo 

s 

f 

dTU(0, T) 
0 

and is plotted in Fig. 6 as a function of Rv/K. The breakdown of the asymptotic solution 
below RV]K = 5 is indicated by the intermittent character of the line. The dotted line is 

a suggested interpolation based on the asymptotic solution above Rujlc = 5 and the point 
(2”) = To at RV~K = 0. It is evident from Fig. 6 that for RV/K e 1 the mean particle energy 
in interstellar space may be fifty per cent higher for nonrelativistic particles and twenty 
per cent higher for extreme relativistic particles than is observed in the inner solar system. 
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FIG. 5. THE ENERGY DISTRIBUTION U(O,T) AT THE ORIGIN FOR MONOENERGETIC PARTICLES 

INTRODUCED STEADILY AT r = R FOR TI-IE SPECIAL CASE THAT RU/K = 5. THE TWO CURVES 

n= 1 AND?I= 2 REFERTOEXTREME-RELATMSTICPARTICLESANDNONRELATIvIsTICPARTIcLI!.Cj, 
RESPECTIVELY. 

It shows also that if RV/K should be significantly larger than one, the cosmic ray particles 
in interstellar space may be very much more energetic than observed here. 

The reader who is interested in the energy loss to particles in interplanetary space is 
referred to additional illustrations elsewhere in the literature. Singer et CZZ.(M) have con- 
sidered the problem of deceleration without including the convective term in (4). It is 
possible with this omission to treat the diffusion coefficient K as a general function of T, 

using the mathematical formalism of the Fermi age theory. The particle energy loss behind 
a blast wave from the Sun has been discussed by Parkert5). Generally speaking, the de- 
celeration contributes about as much as the density decrease to the observed reduction of 
cosmic ray intensity in the solar system. 

FIG. 6. THE AVERAGE PARTICLE ENERGY (T) AT THE ORIGIN FOR MONOENERGETIC PARTICLES 

INTRODUCED STEADILY AT r = R, PLOTTED AS A FUNCTION OF Rv/K. THE SOLID CURVES ARE 

PLOTTEDFROi?4THEASYMPTOTICFORMWI-IICHBREAKSDOWNSERIOUSLYBELOW RV/K E 5,WHERE 
THE DOTIED LINESSERVE AS ASUITABLE INTERPOLATION. THE TWO CURVES n = 1 AND n = 2 
REFER TOEXTREMB-RELATMSTICPARTICLESANDNONRELATMsTICPARTICLES,RESPECTIVELY. 



THE PASSAGE OF ENERGETIC CHARGED PARTICLES 23 

(6) Total energy transfer between solar wind and cosmic rays 

The work P which the cosmic ray particles in r < R do on the expanding fields of the 
solar wind is 

(19) 

in unit time, where N(r) is the total particle density. For stationary conditions dT/dt is 
given by (2) as 

T (20) 

and 
N(r) = NO exp [-(R - r)u/K] (21) 

Now if RV/K G 1, then T is very roughly equal to TO in (20) (see Fig. 6). Only where 
(R - r)v/K > 1 does T differ a whole lot from TO. But in such regions N(r) is extremely 
small, as is evident from (21), so that the error made in writing Tr T,, contributes very 
little to the integral in (19). Hence to a sufficient approximation 

PS ?$Z2~(-J2 [I- (l+$)exp(-F)] 

For RV/K < 1, 
p _ 4rR3 nN,,T,v 

=3 R 

(22) 

(23) 

and for RV/K > 1, 
p_ hR3 2nN,T,v 2 

N-- 
-3 R (24) 

In addition to the work P done by the cosmic ray particles on the wind, there is the work 
P’ done by the wind on the cosmic ray particles. When a cosmic ray particle approaches 
the solar system and makes a collision with the magnetic fields carried in the wind, that 
collision is a head-on collision and the cosmic ray particle receives energy O(T,v/c) by the 
well known Fermi mechanism. This is only a small energy gain per particle, but so many 
particles are involved that P’ > P. That is, the energy lost from each particle in the solar 
wind is large compared to T,,v/c, but so few particles penetrate into the solar wind that 
there is a net transfer of energy from the wind to the cosmic ray particles. It is shown in 
Appendix 6 that 

p, = 8nR3 NoTon 
-7-R (25) 

for the simple nonrelativistic case. The net transfer II is then 

l-I=P’-P (26) 

from the wind to the particles. For RV/K < 1, II goes to zero, as we would expect of a 
slow or transparent wind. For RV/K > 1, P< P’ so that II s P’. Thus II is positive for 
all positive Rv/K, indicating that in general the stellar wind regions throughout the galaxy 
do work on the cosmic rays. This general Fermi acceleration by stellar winds was considered 
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some time ago by Davis (25) who showed that it probably contributes very little to the overall 
acceleration of cosmic rays in the galaxy. It does, however, consume a significant portion 
of the energy in the solar wind, which is evident from the fact that the galactic cosmic rays 
form a large fraction of the interstellar pressure against which the solar wind is working(4~5~2s). 
The kinetic energy in the solar wind is of the order of 102’ ergs/set, whereas something like 
1W ergs/set per star seems to be needed to maintain the galactic cosmic ray intensity. 

4. PASSAGE OF ENERGETIC SOLAR PARTICLES OUT OF THE SOLAR SYSTEM 

(a) Time of passage 

Consider the escape of energetic particles from the Sun out through the interplanetary 
fields into interstellar space. If particles are released suddenly at the origin at time t = 0, 
the initial condition is 

wp, 0) = lim ‘(r - 4 
E--O 47& (27) 

together with the boundary condition (16). The solution of (15) for this case may be 
constructed from the solution given in Appendix 1 by replacing R - h there with E. The 
decay of the particle density W(0, t) at the origin is illustrated in Fig. 7 for various effective 
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FIG. 7. THE DECAY OF THE PARTICLE DENSITY W(O,T)AT THE ORIGIN IS SHOWN BY THE SOLID 

CURVESASAFWNCTIONOF d/R* FOLLCW.'INGRBLBASEATTI-R3ORIGINATTIMBt = 0. THEPARAM- 
ETBR RV/K REPRESENTS THE RELATIVE STRENGTH AND/OR EXTENT OF THE SOLAR WIND. THE 

BROKEN LINES REPRESENT THE DECLINE OF THE MAXIMUM PARTICLE DENSlTy IN THE RADIAL 

DISTRIBUTIONPLOTIZDR‘IFIG.~. 
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wind strengths Rvl K. It is evident that the effect of the wind velocity v is to assist the diffusion 
in transporting solar particles out of the solar system. To compare the convective velocity 
v with the diffusion velocity, note that the particles diffuse a characteristic distance r in a 
time t where r2 = 4Kt. Hence the characteristic diffusion velocity is 

dr K”’ 2K 
-=- 

dt p/2 = 7 

It is evident that the diffusion velocity exceeds the convective velocity at first, and the two 
become equal only when rv/K = 2. But we have pointed out that the maximum value of 
rv/K, namely Rv/K, may perhaps be only as large as 1. If this is correct, then the diffusion 
velocity may dominate the convective velocity at all times. Then as a first rough approxima- 
tion the decay proceeds as t3f2 near the Sun until the particles begin to reach R in significant 
numbers, whereupon the decay becomes exponential as described elsewhere 5,8). The 
effect of the convection (which may be large if RV/K should prove to be greater than one) 
is to hasten the onset of the steepening of t-3’2, which leads eventually to the asymptotic 
exponential decline. The convection also increases the rate of the final exponential decline, 
as may be seen from Fig. 3. 

Perhaps the most novel feature introduced by the convection is the asymptotic form 
of the particle distribution in space during the exponential decline. In the absence of 
convection this distribution is of the form sin r/r, which is a maximum at the Sun. In the 
presence of convection the distribution is more complicated, with a minimum at the Sun 
and a maximum at some distance out in space. RV/K = 1 puts the maximum at the orbit 
of Earth or beyond, as may be seen from Fig. 8. The particle density at the maximum may 
be considerably greater than at the origin. The particle density at the maximum as a func- 
tion of time is shown in Fig. 7 by the broken lines. 

In closing this discussion we remind the reader that the actual diffusion in interplanetary 
space is not uniformly distributed throughout the solar system, as it is in the present 
illustrative examples, so that one must be cautious in making detailed application to so 
localized a region as the space circumscribed by the orbit of Earth. 0bservations(5ss,27) 
show evidence of inhomogeneities in K within 5-10 hr after a flare, before the solar wind 
has had time to sweep more than O-1 a.u. The present calculations are intended only to 
illustrate the general trend caused by the wind, such as the tendency for the particle density 
to be a maximum at some distance out in space from the origin. For fitting data taken in 
the restricted volume of space open to observation near the orbit of Earth the simple 
models with RV/K = 0t5) are as good as any, because their simplicity permits other com- 
plications such as changes in K to be considered easily too. 

(b) Energy loss during outwardpassage 

The energetic particles from the Sun are cooled adiabatically in the expanding fields 
carried in the solar wind, just as are the galactic cosmic ray particles. If, as an extreme 
case, the effective diffusion coefficient K were so small that the particles were constrained 
to move with the solar wind (Rv/K g co), then the particle energy T would vary approxi- 
mately as the density to the power n/3, where n = 1 for extreme relativistic particles and 
n = 2 for nonrelativistic particles. A particle of lo9 eV released from the flare where the 
gas density is say, 107/cm3, would have only about 105 eV at the orbit of Earth where the 
density is, say, lo/cm 3. As already noted, K appears to be sufficiently large that the particles 
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escape more rapidly than the solar wind velocity V. To treat the energy loss in this case, 
suppose that particles of energy T, are released continuously at the origin at the rate 
of N/set. The boundary condition is 

-hr2u if dr Om dT U(r, T) = N 
s 

or 

u(r, T) - 
NS(T - To) 

4?TKr (28) 
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FIG. 8. THE ASYMPTOTIC RADIAL DISTRIBUTION OFTHE PARTICLES FORLARGE VALUESOF d/Ra 
ARE PLGlTEDFORVARIOUSWINDSTRENGTHS Rv~K. 

as r + 0. At the outer boundary (16) prevails. Solution of (4) is given in Appendix 4. 
The decline of the energy T as the particles diffuse outward through the solar system is 
illustrated in Fig. 9 where the mean particle energy (T) is plotted as a function of radial 
distance r for the case that R > r. Since presumably RU/K is as large as O(1) during the 
years of solar activity, it is readily seen that the energetic nonrelativistic solar particles 
have had their energy reduced by a factor of the order of four before they escape into inter- 
stellar space. Even extreme relativistic particles have their energy reduced by more than 
a factor of two. This serious deceleration must be kept in mind in theories for the origin 
of cosmic rays in which the cosmic rays are injected from stars and novae etc. 

Since ru/K at the orbit of Earth is presumably small, of the order of 10-l, there is 
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probably little energy reduction at Earth of particles which have diffused directly from the 
Sun. Figure 9 suggests only a 25 per cent reduction in nonrelativistic particle energy for 
rV/K = 0.1. 

The energy lost by the energetic particles goes into increasing the velocity of the solar 
wind. But observations suggest that the energetic particle density probably never gets so 
high in interpla~e~ry space that the wind velocity is greatly increased thereby. The 
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FIG. 9, TK# MEAN ENERGY (r> OF PARTICLES WHICH HAVE DIFFUSED FROM THE ORIGIN, WI3JW3 

THEIR ENERGY WAS To, TO A RADIAL DISTANCE r. Tm PARAMETER &z/3 HAS THE VALUE 16/3 
FOR NONRELATIVISTIC PARTICLES AND 8/3 FOR EXTREME RELATIVRWC PARTICLES. TEfE PARAMETER 

RV~K IS A MRAsURE OF THE DISTANCE ‘IQ WHICH THE REGION OF DIFFUSION AND DECELERA~ON 

EXTENDS. 

kinetic energy density of a minimal quiet day wind of 2 hydrogen atoms/cm3 at 400 kmjsec 
is O-4 x IO-8 ergs/cm3, or some 4 x 103 times the normal galactic cosmic ray background. 

5. ANISOTROPIC PASSAGE OF ENERGETIC PARTICLES 

(a) Cosmic ray modukztion 

The effect of the solar wind on the passage of energetic particles in and out of the solar 
system has been illustrated in the preceding sections with the simpli~cation that the diffusion 
coefficient K$$ is isotropic, corresponding to Y > G in (10). In this way the convection and 
deceleration of the particles were illustrated. In the present section we undertake to illustrate 
the effects of anisotropy, omitting the previous effects of convection and deceleration. 
Consider the situation that ‘cl < ~~~ as a consequence of the cyclotron frequency Q being 
large compared to the scattering frequency Y. Then 

323. 
KilsVLz2, 

82 

and the diffusion is limited to the direction along the lines of force of the underlying field, 
In this approximation the particle density along each line of force is independent of the 
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density dist~bution along the nei~boring lines of force. Let K denote the diffusion co- 
efficient along Bi. For the idealized case that the solar wind is uniform around the Sun the 
underlying pattern of the interplanetary field is the spiraPs) 

r$ r=-, 8 = constant 
0 

where cc) is the angular velocity (3 x 10-o radians/set) of the Sun. It is readily shown (see 
Appendix 5) that a uniform cosmic ray density N, beyond r = R with a uniform diffusion 
coefficient K inside r = R, leads to the cosmic ray density 

at the origin. Noting that roju is of the order of unity at the orbit of Earth, it is evident 
that (Rw sin ~/zJ)~ is very large compared to unity, so that the reduction for a given Rvju 

is by much more than the factor exp (-vR/K) for isotropic diffusion. The adiabatic de- 
celeration is also much greater for a given Rv/K. The reason for the greater reduction is 
simply that the spiral path by which the particles can enter the solar system is very much 
longer than the radial path available when K*# is isotropic. The time to diffuse from R 

in to a given r is considerably increased, so that the outward convection has longer to act 
to reduce the particle density. It is evident that values of RV/K considerably less than one 
will account for a reduction of the cosmic ray intensity by a factor of e. 

(b) Escape of solar p~rt~c~e~ 

In the presence of isotropic diffusion the density of a burst of energetic particles released 
at the Sun dies away as l/t 3/2 W) throughout the inner solar system (neglecting the convec- 
tion discussed in section 3). In the present case also a burst dies away as l/t3j2 during the 
initial stages, because the lines of force, along which the particles diffuse, are approximately 
radial near the Sun. But as the particles reach the outer regions, (rwlv) sin 8 > 1, beyond 
the orbit of Earth where the field is seriously spiralled, the path length increases and the 
decline goes as l/t314 (see Appendix 5). It is interesting to note that in a two dimensional 
model (cylindrical Sun etc.) the decline is l/t when the field is radial and ljt1/2 when the 
particles reach into the spiral. The exponent on the time appears to be reduced to one 
half by the spiral pattern. It is evident also that the adiabatic deceleration must be greater 
than computed for isotropic diffusion for a given vR/K. 

(c) E$eccf of varying dtjiiion coeficcient 

If it is assumed that the diffusion coefficient increases outward in proportion to r, 
then it is readily shown (Appendix 5) that the cosmic ray intensity has a value 

N= N, (-&rexp (& [l - (v~)2]} 
at a radial distance r = (v/o) sin 8 of about one au. where K now denotes the diffusion 
coefficient at the same distance. The more general case that K cc r* is also given in Appendix 
9, where it is shown that for s < 4 the density of a burst of particles released at the origin 
declines as ljP/(~-*). The decline is more rapid for larger s. 
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(d) comparison of the reszclts for isotropic and anisotrupic diction 

It is interesting to note that the constraint of the particles to the spiral lines of force 
has the same effect as an isotropic diffusion coefficient proportional to (1 + 9)-l, u = 
(ru+) sin 0. A diffusion coefficient proportional to (1 + u2)y(u) makes the behavior of 
the particle density constrained to di~usion along the lines of force identical with the 
behavior in the isotropic case with the diffusion coefficient given by just y(u). In view of 
these facts and the theoretical conjecture that K must in general increase somewhat with 
the weakening fields at large distance from the Sun, we are unable at the present time to 
make any assertions whether the anisotropic diffusion along the observed lines of force 
at Earth extends very far beyond the orbit of Earth. 

In fact the difference between the two situations is very slight so long as we are restricted 
to observations near the orbit of Earth: On the one hand, suppose that the particles 
diffuse only along the magnetic lines of force. Put K cc u2 so that a burst of solar particles 
declines like the typical t-1*5 (see Appendix 5, equation 17) demanded by observation. 
Then in order that the cosmic ray density at 1 a.u. be the fraction exp (-1) of the density 
at r = R (as minimum requirement for the 11-year variation) it is readily shown from 
(Appendix 5, equation 18) that the diffusion coefficient at the orbit of Earth must have 
the value 

212 wR sin tI V 
ices- 

- w sin 8 V oR sin 8 

For a 450 km/set wind the length V/CIJ is just 1 a.u., so that with 0 = rr/2 this yields 

1 
K g 6.75 x 1020 R - Z cm2/sec 

( > 
(33) 

if R is measure in a.u. Any value of R in 5-20 a.u. gives the right order of magnitude 
(1021-1022) for K. On the other hand, for isotropic diffusion, suppose that K is more or 
less inde~nde~t of radial distance from the Sun, so that flare particles again decline as 
t-le5. Then put RV/K = 1, so that the cosmic ray density is again the fraction exp (- 1) of 
the interstellar density. We have 

K = 6.75 x 10aDR cm2/sec (34) 

for a 450 kmfsec wind if R is measured in a.u. The similarity of the values of K obtained 
from the two extreme situations, (33) and (34), for R > 1 is immediately evident. 

The difference between the two models lies in the behavior of the interplanetary field 
beyond the orbit of Earth. If the spiral structure presently observed near Earth, extends 
far beyond Earth, then theory requires an associated rapid increase of K with distance, 
say as r2. If the spiral structure is largely obliterated by disorder, K presumably remains 
more nearly uniform for a distance of at least a few a.u. It will be extremely interesting 
when space vehicles venture significantly beyond the orbit of Earth, to see what they show. 
Actually the two idealizations of a K increasing as fast as r2, or a K which does not increase 
at all both seem rather extreme to us, so we would not be surprised to find the actual situa- 
tion somewhere between the two idealized models of complete isotropy and complete 
anisotropy used for illustratron here. Perhaps one situation prevails during one part of 
the cycle of solar activity, and another during the other part. 

* The case that K ot I* is worked out elsewhere’6’ for isotropic ditkion. 
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It has been pointed out elsewhere ~3) that the anisotropy (scattering frequency < cyclo- 
tron frequency) at the orbit of Earth plays an essential role in producing the diurnal effect. 
The diurnal effect demands a certain amount of diffusion across the magnetic lines of force 
beyond the orbit of Earth, but the amount is so slight that it does not appear to help 
resolve the present question. Theoretical models, with all the complications of convection, 
partial anisotropy, spatial variation of ~~~ etc., must await further guidance from observa- 
tion. 

6. SUhZMARY AND CONCLUSIONS 

The present study has been aimed at qualitative illustration of the physical behavior 
of energetic charged particles in the interplanetary magnetic fields. The random walk 
treatment of the particle motion has been extended to the anisotropic case of preferential 
diffusion along the magnetic lines of force. The recent magnetometer observations of the 
interplanetary magnetic fields near Earth indicate that the diffusion is in fact preferentially 
along the magnetic field, though we have no idea how far this extends beyond the orbit of 
Earth. A detailed comparison of the diffusion of energetic solar particles into interstellar 
space shows that preferential diffusion along the underlying spiral magnetic pattern de- 
creases the power a of the particle density decline l/P after a flare to about half the value 
it would have if the diffusion were isotropic. For instance, the decay for a uniform diffusion 
coefficient K along the spiral lines of force gives a = 3/4, whereas isotropic diffusion gives 
a = 3/2. The observed values of cc following a solar flare are generally le.5 or more. So 
if the diffusion coefficient were uniform, as assumed in obtaining these results, the diffusion 
along the spiral could be ruled out in favor of more nearly isotropic diffusion. Unfortu- 
nately the expected increase of the diffusion coefficient K with distance from the Sun 
increases a, so the situation is not as clear as one might hope. 

Now quite apart from the question of isotropy versus anisotropy, we were able to 
illustrate the inward progression of an individual cosmic ray particle from interstellar 
space to the orbit of Earth. The progress of individual cosmic ray particles is not some- 
thing that one observes directly, but the period of time for the inward passage, which we 
estimate conservatively to be a few days during the years of solar activity, makes it clear 
that the typical cosmic ray particle loses not less than 15 per cent of its initial energy. This 
energy loss, and the uncertainties in it, should be taken into account in any extrapolations 
that are made to estimate the cosmic ray energies in interstellar space. It was also possible 
to show that about one in lo2 of the galactic cosmic rays incident on the outer boundary 
of the solar wind succeeds in penetrating to any great depth. But that once having pene- 
trated to the orbit of Earth, the particles remain perhaps 25 times longer in the solar system 
than if there were no interplanetary magnetic fields. The principal energy exchange 
between the wind and the galactic cosmic ray particles is the head-on collision which the 
reflected cosmic ray particles make with the fields in the wind. A large portion of the 
solar wind energy is transferred in this way into the cosmic rays which fill interstellar 
space. 

The outward passage of energetic particles from the Sun is affected by the motion of 
the wind. For uniform diffusion K the initial density decline of a burst of energetic particles 
is l/t3j2. The effect of the convection by the solar wind is to increase the rate of the decay 
after a time, hastening the onset of the final exponential asymptotic decay, which begins 
when the particles reach the outer boundary r = R in significant numbers. The convection 
reduces the characteristic time of this final decay too. The convection has the further effect 
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of moving the ma~um of the declining particle density from the Sun, where it resides 
in the absence of wind, outward to some position beyond the orbit of Earth during the 
final period of exponential decline (see Fig. 8). 

The theoretical considerations taken up in this study show the kinds of questions that 
can be answered only by observations. First of all, it is evident that much more informa- 
tion of the kind illustrated in Fig. 1 needs to be accumulated near Earth. As pointed out 
elsewhere(15) the question of whether the magnetic irregularities are unrelated bends, or 
localized waves, in the lines of force, has a great deal to do with their effectiveness in 
scattering high energy particles. Does the field in fact follow the pattern set by these 
preli~na~ plots, with a tendency for a sharp bend every l-10 x 106 km or so, or is the field 
usually smoother, or much more regular ? The basic tensor properties of the diffusion 
coefficient ~~~ depend very much on such things. And whatever the nature of the field now, 
how will it, and K$,, vary over the 1 l- or 22-year cycle of solar activity. Then there is the 
question of the field, and lclj beyond the orbit of Earth. Do the irregularities in the field 
increase beyond Earth, or do they decrease ? How does the tensor form of Q change with 
radial distance from the Sun? How does the magnitude of ~~~ change? It will be par- 
ticularly interesting when detailed studies of the time variations of solar particle intensities, 
which have already thrown so much light on the properties of the interplanetary field(8*10*17*18) 
can be carried out in association with simultaneous direct observation of the int~~lanetary 
fields. 

The ultimate observational question is, of course, to determine by how much the cosmic 
ray density is reduced in the inner solar system below the level in interstellar space. 
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PeaIoMe-AaeTcFI noRcAewfe, conpoBom~aetdoe pn~o~ si~eanK3KpoBaHnbIx npHMepoB, 
npoxoga4acTKq KochwIecKKx nyqei sepes MemnnaHeTHoe npOCTpaHCTB0. Qopbfanb- 
HbIe npHMepar pa3pa6OTaHbI Ha npe~nonomeHm& 4~0 3nepreTKsecKne sacTKqbI B 
MeHUIJIaHeTHOM npOCTpaHCTBe 6JIy?KnamT B HeO~HOpOJ&HOCTHX B UpOCTpaHHOM Me?K- 
IIJIaHeTHOM MarHHTHOM nOJIe. HeOAHOpOAHOCTH npOABHramTCR CO CKOpOCTbm npn6- 
JIEi3HTeJIbHOfi COJIHeqHOMy BeTpy. BeposTnoe KnaccwecKoe pacnpeAeneHne MomeT 
6bITb nOJJBeJJeH0 non ypaBHeHIle @OKKep-nJIaHKa. PaapaBoTaHo BbIpameHne o6wero 
xapawepa AJIH K03@&iqHeHTa K$, paccesnnw YacTnq, muuoqaro~ee KaK pacceaHHe B 
MarHBTHbIX HeO~HOpO~HOCTFiX, TaK M Ape&'&I CHCTeMaTHYeCKOrO aaBJIeHKH. AamTcH 
MarHHTOMeTpOBbIe AaHHbIe, nonyseHHbIe IfccJIenoBaTeneM XYIII, 9T06bI nOKa3aTb 
HaCKOJlbKO TeCHO--B CpeaHeM-MemnJIaHeTHOe MarHHTHOe nOJle, B CnOKOtiHblf AeHb, 
COrJIaCyeTCn C TeOpeTMYeCKHM CnHpaJIbHbIM yrJIOM , a TaKme yKa3aTb Ha TO, 'IT0 
sacTKqbI IIpElBbIwIO nepeaBnramTcn cBo6onHee BAoJrb nona, KemenK nonepeK Hero, 

KII’KI. HaBnmnaeMbIe nOJIri 06HapyHCEfBamT, 4TO KO3@@ilJHeHT pacceRHEls npI%Hm- 
JIemHT nOpRAKy B 1081-10ea CM= CeK, COOTBeTCTBymweMy Ilp@IWl¶M KaJIbKyJIHqHM B 

K3yYeHuK KocMnYecKKx ny9e8. CpeqHee 3HarIeHKe B 3 x lOa CM~ ceK, 3acTaEumeT 
npennonaraTb, YTO rpa@ieHT IIJIOTHOCTI~ KocMwIecKHx npett npu6n. 10% Ha a.e. 
nonepeK 0p611~b13etdnK. 

~enocpe~cTseHHbIeHa6nm~eH~rrMe~n~aHeTHoroMarHHTHoronOJInnpe~OCTaBJIRmT 
BOBMO%HOCTb KOJIH‘ieCTBeHHOrOBbIYHCJIeHHn K*,,B Ka'IeCTBe (PyHKqMH3HeprMll'4aCTHq. 
IIepBbIM npKMepoM,no~nemanvfM paCCMOTpeH&im,HBJIReTCR MaoTponHoe paccemnie B 
Ci#epl%=IeCKOti o6naCTIi 9. < R C paBHOMepHOt,p3JU4anbHOt CKOpOCTbm BeTpa V, H OH 
AaeTca B qenfix EJIJImCTpa~IiH o6ntero xapaKTepa npo~onHtwTenbnocTz4 npoxona 
YaCTIlIJbIKOCMIl~eCKOrO~y~a~epe3 COJIHesHymCEiCTeMy. yKa3bIBaeTCfl,4TOIIJIOTHOCTb 
KOCMU9eCKHX JIyYefi COKpaIIJaeTCff B nOpFIAKe eXp (-VR/K) H 9TO CJIenOBaTeJIbliO B 
roPbI COJIHesHOi aKTnBHOCTll VRIK He MeHee 9eM npK6n. 1 ~JIR npoToHoBO~HOrOBe V, 
nmi o~on03Toro. BaaToro cnegyeT,s~o raJIaKTnZIecKne9acTKqbIKocMH~ecKnxny~et, 
KO BpeMeHEl Ha6JImfieHlin KX, yme 06bI9HO IIpOBeJIH HeCKOJIbKO AHeti B COJIHeYHOti 
cncTeMe. B TeYeHne 3Toro nepnona own Haxo~nTcn B pacnmpnmqmxcn MarHKTHbIx 
nOJInX, HeCOMbJe COJIHeYHbIM BeTpOM, C mHa6aTKYeCKEi 3aMeAJIeHHOi CKOpOCTbm, 
yTpaYHBan 15 llJlEl6oaee npOqeHTOB CBOeti 3Hepl'EiHKTOMyBpeMeHEf,4TO OHElnO~Bep- 
ramTcsi Ha6JImAeHHnM. PacnpeaeneHHe aHeprm4 ywasano ,wrr gacTKq c 0nKHaKoBoii 
b~cxo~no# 3HeprHeti T, OT MeH(aBe3AHorO npocTpaHcTBa. HacTynamrqas BeponTaan 
BOJIHa eAElHot nacTHqbI HwHCJIReTCH B KagecTBe @yH~qnH BpeMeHK, yKa3bIBaH KaK 
'IaCTElI@ OTHOCliTCn BeTpOM. 

AaeTcfI HnJImCTpaqHR 06paTHOti npo6neMbI SHHpreTEIYeCKHX COJIHB'IHMX YaCTKq. 
COJIHeqHbIe YaCTMIJbI MOryT XapaKTepHbIM 06paaoM yTepRTb 50% CBOet nepBOHaYaJIb- 
HOti 3HeprIlIl n0 TOrO, KRK yCKOJIb3HyTb B MeHt3Be3HHOe npOCTpaHCTB0. &niH(eHme 
seTpa, HanpaBneHKoe Hapyxy, nepeMeqaeT six BeponTHoe pacnpeAenemie Hapymy 
TaKHM o6paaoM, 9TO B KOHe4HOM CqeTe MaKCHMaJIbHaR IlHTeHCEiBHOCTb COJIHesHOti 
qacTnqbI MomeT KaXOAEiTbCfI aa npenenaMn op6n~b1 3eM3IK. HanpaBneHHoe Hapymy 
ABMX(eHHe BeTpayCKOpReT nOHEIW(eHEie HHTeHCIlBHOCTEl COJIHeYKOtYaCTHI@I. 

YCTOi+illBOe COCTOHHHe ElHTeHCHBHOCTIl HOCMHgeCKHX JIyseti BbIQiC~ReTCR n0 BCefi 
C@epU4eCKOto6JIacTHr < Rnpa yCJIOpliUpaBHOMepHOCTHIIJIOTHOCTIln;,KOCMEI4eCKUX 
nyqeti, nOJIysaeMOti B MeHCBBe3AHOM npOCTpaHCTBe. PaweT IIpOMSBO~EiTCH JJJIH 
HaoTponHoro K<j II OH nony4aeTcx npsf yCJIOBHEi, YTO MarHHTHbIe HeOAHOpOAHOCTli 
6onbInolt aMIIJIETyfibI II MaCIIITa6OM HenpeBbImamIIwM panayc BpaIUeHEiH YacTw 
KocMwzecKHx nyreP, a TaKme Ann annaoTponHor0 K#,, npn IC,,> K~, nonyqaeMor0, 
KOrEanOne OTHOCllTeJIbHOCnOKOEIHO. (Ha6nm~eHEisnpKMmmMyMe COJIHeqHbIXIIFITeH 
3acTaBnnmT npeAnonaraTb, 9TO K,,>K~ HaXOAnTCR y Op6HTbI 3eMJIH.) YaCTEiUM 
paCCeHBamTCRJInIlIIlbB~OJIbCnllpaJIbHblXJIHHEldCI4JIbI, KOr~aq,~>~HTaKEZMo6pa30M 
CIX nyTb B EI 113 COJIHeqHOti CHCTeMbI rOpa3AO AJfHHee, 9eM B TOM Cnyqae, KOrAa K,? 
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H80TpOIlHO. B pa8yJIbTaTe,HHTeHCUBHOCTb KOCMHUeCKHX Jlyqefi llOHH?KaeTCII rOpa8AO 

6onbme ,qns namoro vRIK,,. 
OTHOCHTeJlbHO IC<,H~ HMeeTCR HeIIOCpeJ(CTBeHHOZt 06CepBaqliOHHOi HHi@OpMaqKS¶ 8a 

IlpeneJlOM Op6ElTbl 3eMJlH, rJJe IlpOKCXO~HT IlOHIlX-ieHFle KHTeHCHBBOCTH. O~HaKO, B 

paClIOpH~eHHK HMeeTCR KOCBeHHaR IZH#OpMa~UR, KPK TOT (PaKT, 'IT0 MHTeHCEIBHOCTb 

aHepreTmecKnx conHewbIx sacTHq HepeaK aaTyxaeT, KaK t-g, npu g = 1,5 - 2.0. 
YKaSbIBaeTCH, 9TO AJIH TOrO, 9T06bl 3TO CJIy=iUJIOCb, HeO6XOmfM0, =ITO6bI 1~~1 CLT"II~K 

A!? = o,o-0,6, eCJlU ~6, USOTpOIlHO, IlpOAOnHtanO 6bITb TaK 3Ke aHHSOTpOrIH0 8a 

UpeAenoM 3eMJlK, KBK OH0 Ha6JltOiZJaJlOCb B6JlESSi 3eMJlH, EI TOrna paCCeRHHe ~OJIH-iHO 

6bICTpO yBeJlWIHBaTbCFI C paCCTOHHIleM OT CoJlHqa. 3TII KOJIH'4eCTBeHHbIe XapaKTepPf- 

CTHKK MOryT 6bITb JleI'KO 06HapyIKeHbI llptr Ka6moAeHnsx 9aCTIia, IlOJleltt U IIJfaSMM 

8a npenenoM op6K~ti 3emK. 

APPENDIX 1 

Particle d$i&on in a radial wind 

Consider the solution of the Fokker-Planck equation (1) for the probability distribution 
W(r, t) for the special case that ~~~ is isotropic and subject to the boundary conditions (13) 
and (16). Taking u and K to be uniform over r and t, introduce the variables s = Z&/K 

and 5 = vr/K. Then 

(1.1) 

Put 
II+, t) = S($P(s) 

The equation is immediately separable into 

s+rBs=o 
and 

(1.2) 

P”+ (;_ 1) P’f- (+) P=O, (1.3) 

where o is the parameter of the separation and is taken to be real and positive. From 
(1.2) we have 

S(s) = exp (-CM) (1.4) 

The solution of (1.3) can be expressed in terms of confluent hypergeometric functions. It 
is more convenient for our present purposes, however, to consider the characteristic 
solutions. 

Let 

(1.5) 

The indicial equation is 
a(a + 1) = 0 

We reject the case a + 1 = 0, since W(r, t) must be finite at the origin, obtaining, then, 

P(Q4 iI) = C(0) [l + 5 + y 52 + !L&2 p 

4 
60,~ - 43~ + 30 

720 
t4 + 68w2 -l,“;; + go 55 + . . .] 

(1.6) 
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for any given value of o. Here C(o) is an arbitrary constant to be determined by the later 
normalization of P(5). Note, for later use, that P(0) = P’(0) = C(W). Using (1.6) to 
define the characteristic solutions of (1.3) we have 

(1.7) 

where the w, are characteristic values chosen such that 

P(o,, vR/K) = 0, (1.8) 

automatically satisfying the boundary condition (1.6). 
Now write (1.3) for P(w,, 0 and multiply by c2 exp (- lJP(o,, 0; then write (1.3) for 

P(ob, l’) and multiply by [* exp (-lT)P(cu,, 0; then subtract the two equations. The result 
may be written 

$f K2 exp (-O(p,p,’ - P$i)I + (wb - oaX2 exp (-c)P,P, = 0 

Integrate from 5 = 1 to 5 = RV/K and recall (1.8). The result is 

d5 C2 exp (-5)P,P, = 0, (W 

which establishes the orthogonality of the characteristic solutions for a # b. Then put 
s = 0 in (1.7), multiply by c2 exp (-nP(w,, 5>, and integrate from 5 = 0 to 5 = Rv/K. 

Adjust C(w,,J such that 

s RVllt 

0 
4’ C2 exp (-~)P~(o,, 5> = I (1.10) 

The result is 

s 

RVlX 

a, = dlC2 exp (- W(~m, 0 W, 0) (1.11) 
0 

For the initial conditions (13), 

V3 

a, = - exp 
47TK3 

[- 5 CR - N] +L. 5 (R - h)], 

so that 

W(r, 1) = g3 exp [ - f (R - M] 

xs,P[~,,,i(R-h)] p(~~.F)exp(-$) 

(1.12) 

(1.13) 

For v2t/~ of the order of one, or more, the first two terms in the series give an adequate 
approximation. 
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For the present problem, wherein k < R, note that 

~[~~,~(R-h)]--P’[o,,~(R-h)]V(RKh)+O~~~]a) (1.14) 

Numerical inte~ation of (1.3), beginning with (1.6) at 4 = 0, yields the following special 
cases : 

(a) For UR/K = 1.115, wt = 10, o4 = 32. The functions P(wl, r) and P(wI1, 5) are given in Table 1 
with the normalization (1.10). The special values are P’(wl, Rvjtc) = -690, P’(wa, Rv~K) = 11.8. 

(b) For OR/K = 5.53, m1 = 1, wa = 2.16. The functions P(op, 0 and P(w,, iJ are given in Table 2 
with the normalization (1.10). The special values are P’(q, # = -1.27, P‘(w~, Q = +144. 

For the special case that VR/K = 0, it is easiest to go back to equation (2), which reduces 
to 

aw la 
-ZZ -- 
&r f2 z ( ) 

Paw 
X 

(1.15) 

with T = Kt/Ra, 5 = r/R. The general solution of this diffusion equation can be written 

W(r, t) = i 2 b, sin n& exp (- n2A) (1.16) 
n-l 

where 

s 

1 
b, = 2 d[ [ sin n& W(r, 0), (1.17) 

0 

subject to the condition that W be finite at the origin and satisfy (16). For the initial 
condition (13), 

W(r, t) = 
1 

E * 2rR(R - h)r n=l “’ 

n?z(R - h) 

R 
sin? exp (- T) 

&-~I (-1)“~% sin:exp (- F) 

(1.18) 

(1.19) 

for h Q R. 

The probability distribution W(r, t) is plotted in Fig. 2 for the three cases RV/K = 0, 
l-115, 553. The time at which W(r, t) reaches a maximum at r = 0 is plotted in Fig. 3 
in units of R2/~, along with the associated maximum value of W(0, t), using the first two 
terms in the series for the approximation. The subsequent asymptotic decay times co,R2/~ 
are also given. The time for maximum W(0, t) is plotted in Fig. 4 in seconds for v = 400 
km/set and for various values of R and K. 

Now if the region r = R were in an infinite space filled with cosmic rays with number 
density N, and an isotropic distribution of their velocities, W, then under steady condi- 
tions it is readily shown from solution of (1) with a W/at = 0 that the density inside r = R 
is A$ exp [-v(R - r)/K]. Keeping this fact in mind, note that the flux of isotropic cosmic 
ray particles inward across r = R is &w/4, so that in the time interval (t, t + dt) there 
should be introduced 4nR2 x ~A$,w dt particles at the depth h (co~espon~ng to about 
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one mean free path into the diffusing region). Summing over the probability distribution 
of all such particles introduced prior to the time t gives the steady distribution N,, exp [- v x 

CR - w49 

4rR= x ; N,w 
s 

t 
d,u W(r, t - ,u) = NO exp [--v(R - h)/~] (1.20) 

--m 

This equation serves to determine the correct effective value of h. For h < R it is readily 
shown from (1.19) for the special case v = 0 that 

s t m (-l)“-l . n7rr h _~d~W(r,~-~)=~r~~l--ln-=- 
n7r R ~?TKR~ 

Hence, (1.20) gives 

The usual elementary definition of K in terms of the particle velocity w and effective mean 
free path 1 is K = @w, yielding h = 4113 in this special case. Another example is given 
in the Appendix 2, where particle diffusion in a one dimensional wind is given. 

TABLE 1 TABLE 2 

RU/K = 1.115 RV/K = 5.53 
P@h, n PC% n m-k 0 mh, n 

5 WI = 10 wa = 32 1 WI = 1 ma = 2.16 

0 
0.10 
0.20 
0.25 
0.30 
0.35 
0.40 
0.5 
0.6 
0.7 

8:i5 
0% 
1.00 
1.10 
1.115 

3.08 
3.33 
3.52 
- 

3.59 

3; 
3.34 
3.04 
2.61 
2.07 
- 

1.46 
0.79 
0.105 
0 

5.92 
6.21 
5.86 
5.45 
4.86 
4.14 
3.31 

$1.48 
-0.47 
-1.95 
-2.43 
-2.43 
-2.31 
-1.48 
-0.21 

0 

0 
0.5 
1.0 
1.2 
1.4 
1.6 
2.0 
2.4 
2.8 
3.2 
3.6 
3.8 
4.0 

1:; 
4.8 
5.2 
5.53 

0.147 
0.233 
0.345 
0.397 

oGi2 
0.635 
0.761 
0.878 
0.971 
1.020 
1.025 
1~010 
0.914 

oio 
0.372 
0 

0.269 
0407 
0.527 
0.558 
0.575 
0.578 
0.521 
0.373 

+0*156 
-0.167 
-0.483 
-0.631 
-0.766 
-0.903 
-0.903 
-0.822 
-0.497 

0 

APPENDIX 2 

Particle di$usion in a one dimensional wind 

The problem of the diffusion of a cosmic ray particle upstream through a wind is 
illustrated very simply by the one dimensional wind, in, say, the x-direction. Some of the 
properties of this upstream diffusion are exhibited clearly in the linear one dimensional 
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flow whereas they are obscured by the convergence of space toward the origin in a radial 
flow. The Fokker-Planck equation may now be written 

Consider the solution of this equation in x > 0 for uniform v and K, subject to the boundary 
condition that 

W(0, t) = 0 (2.2) 

and the initial condition that 
W(x, 0) = 6(x - h), (2.3) 

representing a single particle entering the re@on x 2 0 and being scattered after pene- 
trating a distance h. Let Q(x,p) represent the Laplace transform 

QCx,p> = s, dt exp (-pt) W(x, t) 

of the probability distribution WCx, t). Then the transform of (2.1) gives 

(2.4) 

The solution is 

Q&p) = 4exp six - exp WI 

where A is an arbitrary constant and the form of the solution has been chosen such that 
Q(O,p) vanishes and (2.2) is automatically satisfied. The quantities S, and s, are 

$,2 = ; [I f (1 + 4K$‘/V2)“2] (2.7) 

and 

Introducing the initial condition (2.3) leads to 

Qb, p) = A (exp S,X - exp s2x) 

+ K(sl i sz) [exp s2(x - 4 - exp 4x - 41 

(2.8) 

Note that s, > 0 and s, < 0. Then the constant A is determined by the requirement that 
Qfx, p) remain finite as x -+ cc, and 

Q<x, P) = K~~~~d [exp (-s&) - exp I--s&)1 (2.10) 



38 E. N. PARKER 

Inverting the transform, and skirting the branch point in ~1 - S, at p = --va/4~ so that 
the integrand is single valued, leads ultimately to 

Wxp ‘) = (4rrK.)1/2 L[l-exp(-$)]exp[-(Ut+~~“)2] (2.11) 

This expression W(X, t) is the Green’s function for (2.1) subject to the boundary condition 
(2.2). From it can be generated the probability distribution for the introduction of particles 
in any general pattern in space and time. 

The probability II that the particle is still in the region of diffusion after a time t is 

l-I(t) = s m dx W(x, t) = 
0 

k(l-erf[$]-expE[l-erf[$i]]] (2.12) 

For Smd t (dKt< h2), 

For large t 

IIct)~i- (-$+)liaexp(---$) (l+eXPF) (2.13) 

,,t~_(~)1’2(1-exp~)exp(-~) (2.14) 

If particles are introduced steadily at x = h at a rate N,w/4, as would be the case for 
an isotropic distribution with density No outside (X < 0), the distribution after a long time 
approaches the steady value 

1 

s 

t 
?T(x) = 4 Now 

--m 
dp W(x, t - /A)=+~; (expz-l)exp(-F), (2.15) 

which is, of course, precisely the .stationary solution of (2.1). In order that ~(0) = N,,, 
as it would for an isotropic particle distribution in x < 0, we must put 

vh 4v 
exp--I=-, 

K W 

or since oh/K < 1, 

(2.16) 

which is the same result obtained in Appendix 1 for the spherical case. 
It is instructive to take a brief look at the form of the probability distribution W(x, t). 

The distribution is essentially a wave, which starts as a very sharp spike at x = h when 
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t = 0, and progresses upstream from there, broadening and dying out as it goes. Consider 
the situation that h is small compared to the distance x, appropriate to the problem of the 
diffusion of cosmic rays inta the solar wind. Then define the dimensionless space and 
time coordinates 

(2.17) 

and the parameter 
?A 

a=- (2.18) 
K 

We are interested in values of x such that OX/K is not less than O(1). Hence, since ?J> 1 
and UX/K = aq, it follows that a < 1. In terms of 7, ,IA and a (2.11) can be written 

The maximum of this function, where aIV,,& = 0, lies at the point where 

aT+q---1 

aT+q+l 
= exp - !! 

( ) K 

Since cc7 and q are both large compared to one, it follows at once that r/~ must be very 
small compared to one, pe~tting expansion of the exponential in a power series. Keeping 
terms first order in S/T in the expansion yields the quadratic 

q2 + “ljl - 27 = 0 

from which it follows that the maximum has the position 

+([1 +-&]1’2- 1) 

For intermediate times when, 72 = l/a”, the maximum is at q = l/a. For late times, 
T2 >> l/a2, the maximum approaches the limiting position 17 = ~/CC, in a manner given by 
the asymptotic relation 

q-2 l- 
a [ 

-&+o 1 ( )I cr372 

For such values of time (2.11) may be’ approximated as 

*k t, (4Vhg)112 ,L[qexp(--y)] [-&exp( --:)I p 

so that the profile 7 exp (-9f2) is stationary in space and decays away essentially 
exponentially with time. The crest of the probability wave is held at x = ~K/U by the 
sweep of the wind. Only the exponenti~ tail of the wave extends to larger values of x. 
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APPENDIX 3 

The energy loss of a cosmic ray particle djiising in through the solar wind 

Consider the solution of the Fokker-Planck equation (4) for the probability distribution 
U(r, t, T) subject to the boundary condition (16) and the initial condition 

U(r, 0, T> = 
6[r - (R - h)]6(T - T,) 

47r(R - h)2 (3.1) 

representing a spherical shell at r = R - h containing one particle with an energy T,; 

R 
4rr 

s s 
dr r2 mdTU(r, 0, T)= 1. (3.2) 

0 0 

In terms of s = u2t/K and 5 = vr/K (4) may be written 

(3.3) 

upon ignoring the energy dependence of n and K. 

The time dependent problem may be treated using the Mellin transform over the 
energy T, 

m Mr, t, q) = 
s 

dT T+l U(r, t, T) (3.4) 
0 

Then assuming that U(r, T, t)T* vanishes as T + co for all q > 0, the Mellin transform 
of (3.3) is 

aM -=- 
as 

Wq- uM+ 1 a 
-’ 35 p& (gh)] (3.5) 

in which we put 

where 
M(r, q, t> = G(L’) exp (-GUS> (3.6) 

o=$+ (;- I)$+(~---t[l+v]]G, (3.7) 

which is a differential equation of the same form as considered in Appendix 1. Its solution 
is readily effected by the methods given there. 

Fortunately the stationary solution of (3.3) is sufficient for the present purposes, with 
the boundary condition (17), which states merely that all the particles are introduced with 
an energy To at the boundary r = R and escape freely from that boundary thereafter. It 
is readily shown, if 

WY T> =fUW(O (3.8) 
and* 

j -$(Tf) = -Lx, (3.9) 

* It is easily shown, by replacing ia with a in (3.9), that any spectrum of the form T-a fed in at r = R 
is preserved throughout the region. 
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that 
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(3.10) 

Hence, if U(r, T) is to be finite at the origin, the solution is of the form 

U(r, T) = $ s +a 

-co 
&g(m)exp(--ictln~),F,[2(1+~);2;~], (3.11) 

where 1Fl represents the confluent hypergeometric function. Inverting the Fourier transform 
and using (9) yields 

(3.12) 

To determine U(r, T), we must evaluate the integral on the right hand side of (3.12). 
It is readily shown that (3.12) reduces to 

= N&T - To) (3.13) 

in the limit as RV/K -+ 0. This demonstrates the obvious fact that there is no deceleration 
in the limit as RV/K vanishes. At the opposite extreme, RV/K > 1, use the asymptotic 
expansion for the confluent hypergeometric function, obtaining 

Rv fm 
U(r,T)=sTexp -T 

( )S 
da exp (-ias)I’(:! + i2na/3) 

--oD 

x ,&[2(1 + in+); 2; [] [ 1 + y (1 + F) & + 0(xa,R2fJz)] (3.14) 

where 

S=ln [ge)“/‘] (3.15) 

It will be sufficient to evaluate Ulr, T) in the neighborhood of the origin, since present 
observations are confined to the inner solar system. The first term in the asymptotic 
expansion is readily integrated. Write the gamma function as an Eulerian integral of the 
second kind, and reverse the order of integration. Then 

) 

-so (F)” (&)3’^-1exp ( - $ [1 + (&r”J] (3.16) 
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where now RV/K > 1. The error involved in this asymptotic form may be seen from the 
fact that the asymptotic U(0, 2) does not vanish identically at energies above T,. The 
magnitude of the error is demonstrated by 

which is small for RU/K > 1, of course. The asymptotic energy spectrum (3.16) is plotted 
in Fig. 5 for the special case that RV/K = 5 by way of illustration. 

The mean particle energy at the origin is defined by (18). Using (3.16) it is readily 
shown that 

~(2 + 2n/3, 1) 
(T> = To (Ru/K)““‘~[~ - (1 + Ru/K) exp (- Ru/K)] 

(3.17) 

where r(a, X) represents the incomplete gamma function, 
s 

%dt t-l exp (- t). The mean 

energy (T) is plotted in Fig. 6 as a function of RV/K using tie asymptotic form (3.17) for 
large Rv/K. The interpolation for intermediate RV/K is based on (3.17), and (T) = To at 
RV/K = 0. 

APPENDIX 4 

The energy loss of an energetic solar particle d$iiing out through the solar wind 

Consider the solution of the Fokker-Planck equation (3.3) under stationary conditions, 
neglecting cowective transport (which is small if RV/K < 2), for the probability distribution 
U(r, 7’) subject to the boundary condition (16) and (28). Separating the variables as in 
Appendix 3 it is readily shown that the general solution, subject only to the condition 
(16) is 

To +m 
- ‘@’ T, = T51/2 s _-m da C(a)exp( -ialn$) 

X {[kerl(p51/2) + i keil@~1~2)][ber1@~~~2) + i bei,(p#‘)] 

- [berl(pP2) + i bei(pP2)][ker1 (p$‘2) + i kei1(p[~2)]} (4.1) 

where 5 = rv/K, 5, = Rv/K, and p = (8na/3) 112. The function C(a) is arbitrary, and is to 
be fixed by the boundary conditions. Introducing (28) and inverting the Fourier transform 
yields 

Nva1/2 exp (-i?r/4) 

8~2K2To[ber1(p&?/2) + i bei1(pt1/2)] 
(4.2) 

This form for C(a) in (4.1) then yields the particle distribution over space and energy. 
It is sufficient for the present purposes to consider the particle distribution W(r) over 

space 

s 

m 
W(r) = dT Ur, T> (4.3) 

0 
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and the mean particle energy (7’) given by 

W(T) = 
s 

mdTTU(r, T) 
0 

Integrating (4.1) over T from T = 0 to T = co leads to the integral 
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(4.4) 

j_rd (ln $) exp (-ialnk) =2&(a) 

FIG. 10. A SKETCHOFTHE CUT Cc-PLANE AND'I-HECONTOURAROIJNDWHICHTHE INTEGRATION 

OF(%l)EXTENDSIN THE CONSTRUCTIONOF( 

The integration over a then gives 

(4.5) 

This same result is readily obtained by integrating (3.3) over T, yielding 

Ka 
-- 

r2 ar ( 1 r2 aw 5 =O, 

which, when solved subject to the condition that there are N particles per second intro- 
duced at the origin, yields (4.5). 

To compute (T> multiply (4.1) by T and integrate from T = 0 to T = To*. Note that 

rdTexp (-iah:) =$ 

In order to carry out the integration over a it is necessary to note the branch point in the 
integrand of (4.1) at a = 1, suggesting that the complex a-plane should be cut along the 
negative real axis. In order that the integral converge as a + -00, it is necessary to in- 
tegrate along a contour lying below the cut, as indicated in Fig. 10. This is easily demon- 
strated by putting a = s exp (-jr) in the asymptotic forms of the Bessel functions of 

* There are no particles with energy higher than To. 
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large argument. In fact it is readily shown that the integrand goes to zero exponentially 
as infinity is approached in any direction below the real axis. It follows that if we should 
close the contour with a semicircle of infinite radius below the real axis, the integration 
around the semicircle gives zero. It follows from Cauchy’s theorem that the integral is 
given by the residue of the pole at LX = --i enclosed by the contour. The result is 

s TO 

0 
dTTU(r, T)= Ns;-+ 

II(P1’2) 
fG(p”2) - mp1’2) I(p’/3 

1 I 

in terms of the radial variable p = @n/3)5. The average particle energy is 

l/2 

07 = To (1” P/PO) 
K(P1’2) - ~~(Pol’2)~,(P1’2)l~,(Po1’2)1 

(4.6) 

(4.7) 

In the limit as R + co, this reduces to 

at all finite r. 

Anisotropic dtjiision 

(T) = Top”2Kl(p”2) 

APPENDIX 5 

(4.8) 

When the scattering frequency Y is small compared to Q, the particle diffusion is limited 
to the one dimensional space along the magnetic lines of force. The diffusion coefficient 
is given by (29). For the idealized case that the wind is uniform around the Sun the field 
density B(r, 8, q5) at a point (r, 0, 4) out in interplanetary space is related to the field 
B(a, 8,4*) at r = a near the Sun by 

(5.1) 

B(r, I!&#) = B(a, 8, $*) (;“)’ [ 1 + f+)“2] (5.2) 

The line of force through 
the line of force is 

(r, 8, 4) is given by 4* = constant in (5.1). Arc length along 

&=&[l + r+)2]1’2 (5.3) 

The relative cross sectional area A of a tube of flux is inversely proportional to B. The 
particle flux along a tube of flux is -AKIN/% so that the accumulation at any given point 
is 

A aN a AK aN - =- 
at as ( ) as 

There is in addition the accumulation from the divergence of the convective flux UN, so 
that altogether 

aiv ia 
-=-- 
at Aa. ( 1 

AK aN 
as 

- f g (r2vN) 
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For a uniform diffusion coefficient along the tube of flux @K/&J = 0) this reduces to 

(5.4) 

where 

(5.5) 

rw sin ~9 
u=- (5.6) 

V 

Thus u is distance measured in units of the distance (v/w e 1 a.u.) out to where the spiral 
makes an angle of 45” with the radial direction, and T is time measure in units of the time 
to diffuse the unit of distance v/w. 

For stationary conditions (aN/& = 0) integration of (5.4) yields 

[ 1 + f (F)’ (R2 + rR + r2)]) (5.7) 

for the boundary condition that the cosmic ray density has the uniform value N,, at r = R 
and there are no sources or sinks in r < R. 

Consider the release of a burst of n particles/steradian from the Sun at time t = 0. 
Up to a time TS I, the particles are close to the Sun (u < 1) and the Fokker-Planck 
equation (5.4), reduces to (1 .I) whose solution was discussed in Appendix 1 and section 3. 
Anisotropy plays no role in the radial diffusion of the particles in this initial period because 
the field, along which they are diffusing, is radial *. Only when u becomes greater than one 
(u g 1 at about the orbit at Earth) and the spiral field significantly oblique does the 
anisotropy begin to make a difference in the radial progress of the particles. This occurs 
when T becomes greater than one. For 7 > 1 the oblique path at large u impedes the 
outward diffusion so much that the particle density at smaller u becomes nearly uniform. 
Hence the particle density at small u becomes independent of the form of the diffusion 
term on the right hand side of (5.4) at small ZL It follows that the particle density is given 
approximately at all ZJ by the limiting form of (5.4) for large u 

(5.8) 

for 7 > 1. 

The effect of convection has been discussed in previous sections, so there is no reason 
to include it again here to complicate the effects of the anisotropy. In the limit of small 
wind velocity the convective term, with the coefficient V~/KW sin 8, drops out of the right 
hand side of (5.8) and the equation simplifies to t 

(5.9) 

* The field prevents the particles from spreading laterally around the Sun, of course. 

t It is readily shown that in order of magnitude oa/~w = (v/w)(u/wL). For the actual wind L s O~lu/u~ 
and v/w = O(lO-*), so that O*/KUJ = 0(lO-2). The form (5.9) is valid until a sign&ant portion of the 
particles reach a distance II given by (KO/O ) * 1’S which is of the order of 3 au. for K = lOaa cme/sec and 
u = 300 km/set. Thus conditions in the wind inside the orbit of Earth often approximate to the limiting 
case of KO/V~ -+ 03. 
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It is easy to show that the time independent solution of this equation can be written as 

N(u, T) = 241’2 s m do o[f(c)J1&u2) + g(c)J-i,, (au2)1 exp (-40~7) (5.10) 
0 

along any given line of force. The functions f(o) and g(u) are to be determined by the 
boundary conditions, which are that N(co, T) = 0 and 

N(u, 0) = lim n !?$ 
E-m 

(5.11) 

Since &(ou2) vanishes at the origin as u lj2, there is no contribution to this mode by the 
initial particle injection at u = 0. The boundary condition N(a, 7) = 0 prohibits the 
existence of the .71,4 modes, as is readily shown by putting in a nonvanishing f(o) and 
carrying out the indicated integration over y. So put f(o) = 0. Inverting the Fourier- 
Bessel transform then gives 

26/4n cc) sin 0 3 
g(u) = - - 

( 1 

1 

P(3/4) 0 p 

so that 

(5.12) 

(5.13) 

(see Watson’28)). Note the flat distribution across u < 1, and the t4i4 decline of the particle 
density at small ZJ compared with the tm312 for isotropic diffusion. 

It is interesting to work out the same problem in two dimensions, for a cylindrical Sun 
revolving about its axis. The lines of force along which the diffusion takes place still 
have the form 6 = V$/W where u”, represents radial distance from the axis, but they do 
not open up so rapidly because the field density is now 

B(6,# = B(a, $6*>; [l + ($)“l’” 

and the Fokker-Planck equation is 

(5.14) 

in place of (5.4), neglecting convection. Here q = uC12t/v2 and E = G,olv, having the 
same significance as T and u in the previous problem. For 6 > 1, 
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whose solution is readily shown to be 

* NC q) = 
s 

da[I;(a) sin a52 + G(a) cos a~?] exp (-402q) 
0 

With 12 particles per radian injected at the origin at time t = 0, it is readily shown that 
N(E, 0) = (n/+(~% - 6) and 

4nos 
G(o) = 7 

and 

m 4) = s2 (;“)2jEexP (-$) (5.15) 

The density declines as t-l12, compared with t-l for isotropic diffusion. 
Finally consider the diffusion along the spiral field in a spherical wind again, with the 

additional complication that the diffusion coefficient along the magnetic lines of force 
has the value K~ at u = 1 and K# elsewhere, where s is a pure number. Then defining T 
as (?K~co~/v~) sin2 0, the Fokker-Planck equation becomes 

aN la 
-= -- 
a7 9 au ( ) 

U” aN 
au (5.16) 

in place of (5.9). The solution for s < 4 which is nonvanishing, but finite, at the origin is 

Co N(u, T) = u(l-s)/2 s do 0 h(o) Jb-1),(4-e) 

20 
4-_s u 

(4-d/2 exp (-OPT) 
0 

For the initial condition (5.11) it is readily shown that r 

2n 
h(a) = (4 _ @3/(4-S) 

1 

l73/(4 - S)]cr(l-s)‘@-@ 

Performing the indicated integration, it is readily shown that 

N(5’ T, = (4 _ s)‘a+8M4ySl~[3,(,j _ s)] 

The density decays as t -3/(4-s). The decline is more rapid when the diffusion coefficient 
increases with radial distance (S > 0). This effect has been discussed elsewhere(5) for 
isotropic diffusion. The stationary solution of (5.4) for this same case K = K1U8 is 

N(u) = No exp 
02 

- 
K1O(l - S) sin 8 

(r&l--s - u”8) + E (##)a--s - zi+s)]} (5.18) 

forsf 1, and 

(5.19) 

.I 
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for s = I, subject to the boundary condition that N = NO at u = u, z (~~~~) sin 8. The 
form ~~r.3 is probably not of much physical interest close to the Sun (u < 1) under these 
stationary conditions because the vanishing diffusion merely predicts vanishing particle 
density there. 

It is interesting to note that if IC were of the form 1 + u2, then the Fokker-Planck 
equation reduces to the form for isotropic diffusion. In this case the particles are still 

r=R -r =R 

t 
V 

FIG. Il. ‘lb3 Gl3GMETRY OF THE ENTRY AND EXlT OF AN ENERGETIC PARTICLE FROM IN’&-Mn&AR 
SPACE m THE SOLAR WIND. Tns HoRUoNrAL. LINES SYMBOLIZE TH8 OUTWARD MOVMG 

AGUES WHICH VANISH UPON REACHIN THE BOUNDARY I = R. 

constrained to move along the magnetic lines of force, but the effect of the spiral on their 
radial motion is exactly compensated by the increase of K with distance. The radial motion 
has the same dependence upon r and t as for the isotropic case. 

APPENDIX 6 

Fermi acceleration in the solar wind 

Consider the energy transferred to a cosmic ray particle which comes head on into the 
solar wind from interstellar space and returns again to interstellar space. Neglect the 
adiabatic cooling of the particle while in the solar wind. It is perhaps easiest to think of 
the magnetic fields carried in the solar wind (and from which the particles scatter) as ranks 
of soldiers marching steadily outward with velocity tr and dissolving into nothing as they 
reach r = R. This is illustrated schematically in Fig. 11, along with the trajectory of an 
incoming and outgoing cosmic ray particle. The particle approaches the outer boundary 
of the wind with a velocity w, at an angle 8 from the normal. It interacts with the wind 
for a greater or lesser period of time, during which period it may be thought of as moving 
in the frame of reference of the wind, and subsequently escapes back into interstellar 
space with a velocity W, at an angle 6 from the normal. To compute w, in terms of ws, 
let w represent the constant speed of the particle in the frame of reference moving with 
the wind. Since w is equal to the initial velocity in the frame of reference moving with the 
wind, it is easy to show that, for the nonrelativistic case, 

The speed w is also equal to the final speed of the particle in the frame of reference moving 
with the wind, so that 

~=~,2~~-2~~,cos~ 
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Thus in the fixed frame of reference, in which W, and W, are measured, the change in the 
square of the velocity upon entering the wind is 

and upon leaving 
(Aw*& = w2 - w,2 = 2uw, cos 8 + O(u2) 

(Aw2), = 2vw,, cos 6 + O(u2) 

If it is assumed that the velocity distribution before entering and after leaving is isotropic, 
then the rate at which kinetic energy is transferred to the cosmic ray particles each of 
mass M, is 

47TR2 
s 42 

dr3 sin 19 x N,,w cos 8 x +M(Aw2>,, 
PI = 0 4nR3 NovTo =-- 

s 0 W de sin 0 3 R 

upon entering the solar wind, with a similar result for the rate of energy transfer P2 upon 
leaving. Hence 

8nR3 NovTo 
P”p,+P,=-- 

3 R 

Now while a cosmic ray particle is knocking about among the magnetic irregularities 
in the solar wind, it may be accelerated by the Fermi mechanism because the magnetic 
irregularities presumably have some small random Alfven velocity v, relative to the wind. 
The energy gain of the particle with velocity w and energy T is O(Tua2/w2) per collision(29). 
If the mean free path between such collisions is L, then in a time t, one expects wt/L collisions 
and a total fractional energy gain 

The Alfven speed v, at the orbit of Earth is typically 50 km/set (5 x 1O-5 G and 5 hydrogen 
atoms/cm3) so that with w = 3 x lOlo cm/set and L = 10’ km we have AT/T = lo4 in a 
typical time of lo6 sec. This suggests that Fermi acceleration of cosmic ray particles is 
negligible while random walking in the magnetic irregularities in the solar wind. 

FermP) speculated that more efficient acceleration might arise if the magnetic field 
contained sharp kinks. Such a mechanism was demonstrated’al) using magnetic irregu- 
larities with sharp crests, in which case the energy increase of a particle is O(TvJw), so that 
after a time t 

AT 0 -= 
T ( ) 

!gt >l 

This mechanism would lead to large, instead of negligible, changes in the energy of fast 
particles in interplanetary space, with extremely interesting consequences. However, we 
see no conclusive evidence in the magnetic records, such as Fig. 1, for the necessary sharp- 
crested hydromagnetic waves. So for the present, the conservative assumption is that 
Fermi acceleration of energetic particles is not an important phenomenon throughout 
interplanetary space. 


