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ABSTRACT 

Sweet's mechanism for the merging of two oppositely directed 
magnetic fields in a highly conducting fluid is investigated in a 
semi-quantitative manner. It is shown that two oppositely directed 
sunspo• fields with scales of 10 • km could be merged by Sweet•s mech- 
anism, if shoved firmly together, in about two weeks; their normal 
interdiffusion time would be of the order of 600 years. It is suggested 
that Sweet's mechanism may be of considerable astrophysical im- 
portance: It gives a means of altering quickly the configuration of 
magnetic fields in ionized gases, allowing a stable field to go over 
into an unstable configuration, subs•quenfiy converting much of 
the magnetic energy into kinetic energy of the fluid. 

I. INTRODUCTION 

Sweet (1956) has recently pointed out that when two oppositely directed 
•a•netic fields of scale L in a highly conducting medium are shoved against each 
•ther, an interesting situation arises in which the two fields will interdiffuse in 
•nes small compared to the usual diffusion time L'•/c'• • is the conductivity in 
•. Sweet's mechanism may be of .importance in rapidly altering the connectivity 

magnetic fields associated with activity in the solar atmosphere, etc.: For 
L•stance, a sunspot field, L •_ 10 • cm, has an ordinary diffusion or decay time of 
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the order of 2 X 10 •ø sec, where the temperature is 10 4 degrees Kelvin and 
1.8 X 10 's esu; with Sweet's mechanism, it is conceivable that two such oppositely 
directed fields can be interdiffused and their lines of force reconnected in 10' 
seconds or less. 

The rapid interdiffusion of two oppositely directed fields when they are pressed 
together by external forces arises from the fact that the field vanishes on the 
surface between the two oppositely directed regions, and the entire compressiv• 
stress falls on the conducting fluid. The fluid responds to the excess pressure by 
flowing out of the region along the lines of force, and the two oppositely direc• 
magnetic fields approach each other more and more closely, according to 
usual hydromagnetic equation 

OB 

= v x (v x ........................ (i) 
in a medium of large electrical conductivity. Consequently, the gradient in the 
field density across the neutral surface between the ;fields increases without limit, 
until no matter how large may be the electrical conductivity •, the diffusion tern 
(c•/4•) •z•'B, omitted in (1), becomes comparable to the dynamical term •7 X 
(v X B), and the two oppositely directed fields interdiffuse as rapidly as the 
efftux of fluid from between the fields allows them to approach each other. The. 
process is shown schematically in Figure 1 for two bipolar sunspot fields at the 
same solar latitude. Initially, the fields are widely separated and have no inter. 
connecting lines of force. In Figure !(a), we imagine that suitable fluid motions i• 
the dense gases beneath the photosphere have shoved the two fields together, wi• 
the distortion shown. The high electrical conductivity of the solar atmosphe• 
prevents interconnection of the lines of force. However, with the outflow of the 
gas caught between the two fields, as indicated in Figure l(b), the gradient in 
across the neutral plane increases until rapid interdiffusion takes place and 
lines of force reconnect, as shown in Figure 1(c). 

If l is the characteristic length of the gradient in B across the neutral 
then the decay time of the field in the region of this gradient is of the order 
l'•/c'..The velocity u with which the fields merge is l/(l•/c•), 

u "" ---½ 

The fluid expelled along the lines of force over a front of width L achieves a ve!ocity 
v, where 

v "'" uL/I ß . 

based on geometrical considerations. The pressure B2/8• ' available for squeezing 
the fluid out along the lines of force leads to the conclusion that 

«pv •. • B•'/S•r 

from energy considerations; hence v • Co , where Co is •he characteristic hydro- 
magnetic velocity B/(4rp) •/•. Therefore, i• follows •ha• 

,-,, (C/L•) •/• •½ o 
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(a) 

(b) 

(c) 

FzQ. 1--(a) Two widely separated bipolar sunspot groups at the same solar latitudes 
(b) The distortion of the bipolar fields as the groups are shoved together 
(c) The reconnection of the lines of force in a week or so, as a consequence of 

Sweet's mechanism 

Without Sweet's mechanism, the diffusion velocity would be c"/L•, which is equal 
to (I/L)ul :For the case of two bipolar sunspot fields of 1,000 gauss, L • 10•cm, 

= "'• 7 m/sec, "'• 1.8 X 10 TM 10-Sgm/cm •, we have Co -- • = esu, and p • 100 km/sec, u _-- 



512 E.N. PARKER J. GEoP•rYs. R•.s., 62,19•? 

and 1/L • 0.7 X !0 ~•. We see how thin, 10-4L, is the transition layer I in which 
the diffusion takes place. 

II. EXPULSION OF FLUID 

To understand the physical process involved in Sweet's mechanism, consider 
firs• how the fluid caught between two magnetic fields might be squeezed from 
between by pressing together the fields. Let us suppose that initially we have two 
infinitely conducting sheets at x -- • e, as shown in Figure 2. We fill the t• 
layer between the two sheets with infinitely conducting invis½id fluid. Outside 

I I 

F•G. 2--Schematic diagram of two oppositely directed magnetic fields shoved against two super- 
conducting sheets at x -- q- • by suitable motions, beyond x -- q- a, of the infinitely condu 

fluid outside the sheets at x - :i: ß 

the sheets, we introduce the magnetic field B with lines of force everywhere pared 
to the xy-plane and expressible as the gradient of a scalar potential 

B = ............................ 

so that B exerts n9 force on the conducting fluid there. To fix ideas, we. supp0• 
that the field B is in the grip of hydrodynamic forces in the conducting fluid beyond 
x = 4- a and is held in such a way that B• - 0 on x = • a and 
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q--a, 
• = +•o(y/,) exp (-f /,•) 

• = -•o(y/,) exp (-y•/,•) 

at z = -- a. As a consequence of the infinitely conducting sheets ,at x = q- e 
(• << a), the field will not penetrate into - • < x < -t- ,, and B, = 0 on x -- 4- •. 
WithB = - V•kin- a < z < - •andq- e < x < q-a, it is readily shown 
that 

4-Bob' f,*• dk sin ky cosh k(z q- •) exp (-k•b2/4) ..... (3) 
where q- is q- for - a < x < - • and - for q- • < x < q- a. It follows that 
•he field density at x = q- • is 

B.(4.e, y) = q =Bøbø' f:' dk k cos ky 4 •/•r . sinh ka exp (-•'•/4) 

If the forces beyond x - 4. a press the two fields on either side of x = q- e together 
sufficiently firmly that the fields are considerably compressed in the x-direction 
and a << b, then we may expand sinh ka abou• k = 0 and carry out the indicated 
integration, obtaining 

x {• - ,(a'/•')(• - 2y'/• •) + O•(a/•)} 

The pressure exerted by the magnetic field on the two superconducting sheets 
at z = :i: • is jus• p = B• (4- e, y)/Sr. If we remove the superconducting sheets, 
so. that the pressure is brough• to bear directly on the field-free infinitely conducting 
fluid in - a < x < q- •, then the motion of an element of fluid with position Y(t) 
is given by 

day I Op 
df - -p Oy 

Multiplying by dY/dt and integrating, we have 

1 (dYh' f r(,, lop - =-- dy--- 
2 \ dt / • r(o) p Oy 

For incompressible flow, p is a constant, and 

dY(t) 
dt Cob {exp I-2Iri•(O).l- exp 

where Co is the characteristic hydromagnetic velocity Bo/(4rp)•/•. 
To compute Y(t) as a function of t and Y(0), we expand Y(t) in ascending 

powers of t. We may then carry put the integration, obtaining 

Y(0- Y(0){i-1- (_•)o. exp I-2Yi•(0)l 
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The coefficient of the term 04(Cot/'a) is small because of the numerical factor 
1/96; it vanishes when Y(0) -- •-b, and is negligible for Y(0) • «b because of the 
exponential. Therefore, we may to good approximation neglect the term 04(Cot/a), 
considering only the first two terms in the expansion. It follows that 

dY(t)/dt • 2Co[Y(O)/a](Cot/a) exp [-2Y2(O)/b2]) ....... (6) ooo 

= - 

Y(0) may be expressed in terms of Y(t), so that 

..... 
Then, writing v• = dY(t)/dt, y = Y(t), we have 

,• = 2Co(y/a)(Cot/a) exp (-2y•/b •) + Os(Cot/a) ............ (8) 

We let !(y, t) represent the width, in the x-direction, of the layer of field-free 
fluid at the position y and •ime t; we see that l(y, 0) = 2e. By integrating the 
equation of continuity • ß v: 0 for •he fluid velocity from x = - • l(y, t) to 
x = • • l(y, t), we find that 

o(y, t)/ot + O(ovJoy) = o .................. 

Hence, we find from equation (8) •hat 

Near the x-axis, ye (( b •, and l(y, t)/l(y, 0) is essentially independent of y; t•e 
field-free layer remains uniform as it decreases i•s thickness. For larger values 0• 
y•/b •, the decrease in thickness is not as rapid. No decrease occurs at y• = b •, •d 
for y• • b • the thickness increases; the fluid escaping from •he high pressures in 
y• • b • inflates the low pressure region of y• • b e, though, of course, the exponential 
factor exp (-2ye/b •) indicates that the inflation is not large. 

III. MERGING OF FIELDS 

Consider the rate at which two oppositely directed magnetic fields can merge, 
as a result of the squeezing out of the conducting fluid initially caught between 
them. Unfortunately, we are unable to solve simultaneously both the hydrodyn•e 
equation for the motion of the fluid and the hydromagnetic equation for •e 
magnetic field B. Since we have already discussed the hydrodynamic motions 
in a qualitative manner, we shall solve the equation for B in a formal manner, 
assuming an idealized form for the fluid motion based on the qualitative pictu.re 
obtained in Section II. Thus, our final results will not be quantitative; we hope 
that they will represent a qualitative picture of the interdiffusion of B. 

We shall restrict ourselves to steady-state conditions, so that o/at = 0, and 
to the case considered in Section ii, where the fields are pressed so closely together 
that a (•( b. Then, except in the region where y' • b e, we have that v•/v, ,B•/B,, 
and (O/ay)/(O/Ox) are all small, O(a/b). The x-component of the hydrodyna•c 
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equation, 

becomes 

Ov/Ot + (v.V)v = --(1/p)W[p + B•/8r] + (1/4rp)(B.V)B ..... (11) 

(O/Ox)(p + B'/8•-) = O'(a/b) .................... (12) 

In Section I, we pointed out how thin is the transition layer, of thickness l, in 
which the diffusion takes place between the two oppositely directed fields. For 
x • > F', the field varies so slowly (O/Ox = O(1/a), as compared to 0(1//), that 
for out present purposes we may regard I B (x, y) I as independent of x. Thus, 
we let 

ß y) = y) 

for x 2 > l '2, where B(x, y) = I B(x, y) [ and where B, (q- e, y) is the field given 
in (4). We suppose that the hydrostatic pressure is p0 at infinity. Therefore, upon 
integrating (12), we obtain 

p(x y) + B2(x, y)/8•- = pc + •' , "'" B•(•, y)/8•- .............. (13) 

We cannot integrate the y-component of (11) because of the complications 
introduced by the non-linear term v:.Ov,,/Ox. However, in Section II, we found 
that the expulsion of fluid from between the two fields proceeds in an orderly 
and nearly uniform manner. In the region yO. < b 2, we may expect to retaiu the 
essential features of the expulsion if we introduce the qualitative argument that 
the elongation Ov,,/Oy of a fluid element at a given point is proportional to the 
velocity which the excess pressure, p - pc, at the point is capable of producing. 
We write 

Ov._• = (P - Po)•/21 Oy o L 

L is a constant of proportionality, and is O(b). Using (13), we obtain 

Or,, IB•(,, y) - B'(x, y)I TM Oy - 8•.L•.o ..................... (!4) 
We would like to demonstrate in our final calculations to what extent com- 

pressibility may enhance •he merging of the two fields. The thinness of the 
transition layer (1 << L, b) in which the fluid is expelled suggests that it is not 
unreasonable to suppose that the compression may sometimes be essentially 
isothermal-we write 

0 = Oo(P/Po) 

The equation of continuity under steady-state conditions becomes 

Or, Op 

At y = O, Ov,,/Oy is finite •nd v, vanishes. Hence, for y•' < b •, we write 
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o (•)____• o• 5• ........................ (1•) 
The hydromagnetic equation 

___• •2 a• vx(vxs)+•v's ot 

may be wri•%en 
, v x [• x • - (oV4•)v x •] = o 

when O/Or = 0. Integrating, we find •ha• 

v X • = (e'/4•)V X • + V• ................. (•) 
where (b is some scalar function of position. Since B= and OB=/Oy vanish a• y = 0, 
it follows that (16) reduces to - 

, 

c • 0B, + X7• v=B. - 4•'o' Ox 
in the region abou• y = 0. Since v• -- 0 at z = 0, we may evaluate •7• to be ' equal 
•o OB,,/Oz a• x = O, or 

v,B,- • L•- k•/oS ................... (1• 
To determine the velocity with which the two oppositely directed fields are 

earfled into each o•her, we mus• compute v• outside the transition layer. Outside 
the transition layer, OB,,/Ox • B/L and is negligible. Hence, from (17), we find 
•ha• •he velocity v• at which the fields merge is just 

c • (OB,,'• v. = •.•.(•, •) ,,T;-•/o ..................... (•8) 
We now use (14) •o eliminate Ov,/Oy, and (17) to eliminate v., from (15). We 

use (13) to eliminate p. Since we restrict ourselves to the region near y = 0, we 
may write B = B•. We obtain 

a]lL •½,•) "L' a• - • .... (•) 
= -•(•)[•'(•) - •'(•, •)]'•'[s•(•) - s'(•, •)]'•' 

where , 

•(y) • •,(•, y) ............................. (•) 

f(y) • 8•o + •(•, y) ...................... (•) 
• - •/•,c• •/•L •, • • • •o / po p•y; .................... (•) 

For convenience, we let 
• -- s(x, y)/S•(•, y) ....................... (•) 

I(•) = (o•/ox) /(o•/oi• o .................... ...½4) 
• -- B,(•, y)/•(y) ......................... 

treating • as the independent variable in place of x. Then (!9) may be rewritten 

f d• - • _ •2•1 + X (1 - •2•2)•/2 = 0 ......... (2½ 
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where the lengths A and X are equal to B•/(OB/.Oy)o and (OB/Oy)o/•B2 , re- 
spectively. We note from (23) that • _• 1, since B• (e, y) is the value to which 
B(x, y) rises as we leave the transition region, in the vicinity of x = 0. • is also 
less •han or equal to •ity. 

We may expand •(•) about • = 0 • ascending powers of •. We obtain 

!(•) = • - (x/x)•' + •(•/x)(• - 5•' - 
+ i(A/X)[1 + 14}•/3 -- 97}'/3 + (16/3)(A/X)(! -- 3•) .... (27) 

-- (32/3)(A/•)=]• • + ... 

We cannot expand f(•) in an ordinary power series about 
because il is not a regular point of the equation. We shall find, howe•er, that 
when • is close to unity, f(f -1)/• is small in comparison to fdf/d•. Thus, we may 
solve the equation by reiteration. The zero-order function f(o)(•) satisfies 

f•o) d f(o• A •(1 --•)•/• .... d• + • (1 - •)•/• = 0 ................. (28) 
We shall suppose that compressibi•ty effects are sma•, • (( 1. Then, neglecting 
terms 0'(•), we readily find that 

•(o,(,) = •) (• _ ,•)•,, • + • (2 + 3, •) + 0'(•) ...... •(2•) 
, 

Because OB/ay essentially vanishes once we have lef• the transition re,on, we 
have the boundary condition [(1) = 0. 

We now retu• to (26), using [•o)(•) in the te• involving f(• - 1)/• and 
computing f(• (0) from 

Noting that 

f du(1-u)s/•/u= 2{•(1-u)*/•+•ct•(1-u)•/•-•ct•h (1-u)•/•} 
we readily find that 

f"(,) = • (1 - + 2(! - - 2 •ct•h (1 - 

- zk• ) (1 _.•.)s/, + •ct• (1 -- •)'/• -- •c•h (1 - 

•/ L• (• - *•)•' - • (• - 7 

We note that • (1) = 0, ss required. . 

(30) 
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We must now adjust A/X in such a way that the series expansion about • = 0, 
given in (27), connects into the reiteration solution about • •- !, given by (30). 
We shall require that they meet at • = 3/4, which we shall find gives a smooth 
curve; both f(•) and dffd• appear to be continuous across • = 0.75. Equating 
•(0.75) to [(•) (0.75) leads to a transcendental equation, requiring numerical solution. 
For the case of incompressibility, • -- 0, we find that A/X -- 0.820; when $ ? 0.316, 
we find that k/• -- 0.772. •(•) is shown as a function of • in Figure 3. 

0-8 

O,4 

o.I 

F•(•. 3--OB/Ox (in units of OB/Ox at x = 0) as a function of B(x, y) (in units of the field den- 
sity outside the transition region) for incompressible (• = 0) fluid motion and for slightly 

compressible (• = 0.316) fluid motion 

From (20), (21), (22), and (25), it is readily shown that 

(18) becomes 

v= •/• I(Pø•• ) 
_ 

C is the hydromagnetic velocity B•(e, y)/(4•po) •/• outside the •ransition re,on 
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Hence, when • = O, we have 

= c(C/L) ....................... 
when • = 0.316, 

v= -- 0.253 c(C/aL) '/• ....................... (33) 

(32) and (33) serve as crude estimates oœ the numerical factors omitted in the 
dimensional arguments presented.in Section I. We see that, in terms of C, v•. 
decreases slightly wi•h increasing compressibility: The gradient (OB/Oy)o across 
•he transition region tends to be enhanced by the compression, as indicated by 
•he smaller value of A/X, but the expulsion of the fluid is slower because of the 
increased density upon compression; the net effec• is a slight decrease in v= when 
related to the hydromagnetic velocity in the uncompressed gas. The net effect 
is slight. We must exercise caution, however, in applying our resuk, that com- 
pressibility slightly decreases •he rate at which the fields merge, because the sign 
of the effec• depends critically on the form of Ov,,/Oy which we have assumed ]n 
constructing (19). 

IV. CONCLUSION ' 

Sweet's mechanism means that the reconnection of the lines of force of magnetic 
fields of scale L is not limited to the long time of L•a/c • and the slow merging 
velocity c(c/•L) which one'would obtain from the diffusion equation 

•B c :• 
_ V•B 

When the velocity term • X (v X B) is included, the merging velocity of two 
fields becomes of the order of c(C/o'L) •/•, which may be very much larger. C is 
the hydromagnetic velocity B/(4•rp) x/2. The ratio of Sweet's velocity of merging 
to the diffusion velocity is (C/c) •/• (o.L/c) •/•, which becomes large for large electrical 
conductivity, large scale, and/or large hydromagnetic velocity. Two fields need 
not be antiparallel for the SweeUs mechanism to work effectively: In Figure 4, 
we show schematically the process of merging two flux tubes which are perpendicular 
to each other; the process is to be compared with that computed from the diffusion 
equation alone (Parker and Krook, 1956). 

We suggest that Sweet's mechanism may be of great importance in producing 
reconnection of the lines of force of a magnetic field into a configuration such that 
its energy becomes available for mechanical motions, etc. A solar flare may be an 
example of this (Parker, 1957). 

We also suggest that the high electrical conductivity (Storey, 1954) of the gas 
within a few earth's radii of our planet does not necessarily exclude the penetration 

10 • of exterior magnetic fields; • = esu, L = 109 cm, and a density of 10 -• gm/cm 3 
leads to a merging velocity of the order of 0.1 km/sec: We suggest that the argu- 
ments we have presented elsewhere (Parker, 1956) against the Chapman-Ferraro 
ting-current model of the geomagnetic storm may lose some of their force. 

Finally, we wonder if it is possible that Sweet's mechanism might modify 
somewhat the diffusion and dissipation of the magnetic field in hydromagnetic 
turbulence. 
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F•o. 4--Schematic drawing of the merging of two perpendicular flux tubes by Sweet's mechanisn• 
The fluid squeezes out of the region of contact of the two tubes by flowing along the lines of force 
into the arms of the tubes. Following severing and reconnection of the lines of force• the tension 
in the reconnected lines tends to make them pull away from the region of contact and follow a 

shorter path between the tubes• as shown. 

Sweet, P. A. (1956); Proceedings of the International Astronomical Union Symposium on 
Electromagnetic Phenomena in Cosmical Physics, Stockholm, 1956. 

Parker, E. N., and •. Krook (1956); Astroph. J, 124, 214. 
Parker, E. N. (1957); Phys. Rev., 107, 830 (1957). 
Storey, L. R. O. (1954); Phil. Trans. P•. Soc., A, 246, !13. 
Parker, E. N. (1956); J. Geophys. Res., 61, 625. ' 


