The 1st ELAGE, Merida, Mexico, 16 July, 2007

Auroral Physics Akira Kadokura

Space and Upper Atmospheric Science group National Institute of Polar Research, Tokyo, Japan WDC for Aurora kadokura@nipr.ac.jp

Wintering at Syowa Station in the Antarctic in 1989 and 2003 to do auroral observations

Outline

Brief history of auroral study
Auroral basics
Auroral substorm
Some other issues

"Aurora"

Goddess of Dawn in Roman mythology (equivalent of "Eos" in Greek mythology)

> Who named ? Galileo Galilei (Italy, 1619)

Auroral legends in ancient times

 Aurora is a narrow and dangerous pathway for the departed souls to heaven
 Aurora is the collective image of spirits playing football with the skull of a walrus

An Eskimo soapstone sculpture

Aurora in the Medieval Period

Candles in the heaven

Aurora in the Medieval Period Fire from a crack of heaven

Aurora in the Medieval Period A bad omen of unhappiness or war

Aurora in the Medieval Period Sparks from a battle in the sky

Aurora recorded by the polar explorers

Fridtjof Nansen (Norway) Expedition to north pole with the ship Fram (1893-1896)

Recorded by eye & hand

Auroral sketches in 1886

Recorded by eye & hand

in 1886

in 1926

Observation by eye

Birkeland and Störmer in 1910

Laboratory Experiment for artificial aurora Kristian Birkeland (Norway) (1867-1917)

Birkeland and his terrella (meaning "little earth")

Auroral frequency distribution

Elias Loomis (1860)

Auroral frequency distribution

F10. 7. The distribution of isochasms, or lines of equal auroral frequency, in the northern hemisphere, according to Fritz

Hermann Fritz (1881)

Auroral occurrence distribution

Northern Hemisphere

days/year

Vestine (1944)

Auroral occurrence distribution

Southern Hemisphere

days/year

Vestine and Synder (1945)

Auroral Zone

Auroral Zone

Observation with optical instruments

Fig. 1.8. A photograph of the Alaskan 16 mm all-sky camera installed at Ester Dome (College), Alaska. A photometer is also seen in the background.

All-sky camera (front) and photometer (back)

IGY (International Geophysical Year) 1957-1958

Fig. 1.10. The distribution of the auroras at 0830 and 0842 UT on February 13, 1958. The field of view of each all-sky camera station is indicated by a circle of radius 500 km.

100 All-sky cameras in the world

Auroral Oval

Fig. 3.2. Auroral oval for various levels of magnetic disturbance index Q after Starkov and Feldstein (1968). (a), (b), and (c) are for Q equal to 0, 3, and 7 respectively. The mean oval is similar to (b).

Feldstein and Starkov (1967)

Auroral Zone and Auroral Oval

Auroral Oval and ground FOV (Field of View)

Begin of Satellite age

ISIS-2 (1971)391.4, 557.7 nm Spin Scanning Photometer altitude 1400 km

∆t =114 min

DMSP (Defense Meteorological Satellite Program) Satellite (1973 ~ present)

Visible (400~1,100 nm), Scanning Mirror altitude: 830 km, Δt =101 min

DE-1 (Dynamics Explorer) (1981)

VUV (120~156 nm), Rotating Mirror altitude: 3.63 Re x 570 km, $\Delta t = 12$ min

DE-1 (Dynamics Explorer)

Polar (1996)

⊽s ki

Earth camera ($123 \sim 149$ nm), CCD altitude: 7.9 Re x 185 km, $\Delta t = 12$ sec

IMAGE (2000)

WIC 2001-08/17 16:00:35 UT

WIC (140~180 nm), CCD altitude: 7 Re x 1000 km, $\Delta t = 2$ min

Altitude of Aurora

Emission from what ?

Density (/cm³)

Spectrum of the Aurora

Continuous

Spectrum of Aurora

N_2 , N_2^+ , N, O, and H

Emission lines in Auroral Spectra

TABLE 5.4

EMISSIONS IDENTIFIED IN AURORAL SPECTRA ARRANGED ACCORDING TO WAVELENGTH

An asterisk after the wavelength indicates an identification that is uncertain or questionable because of blending with or obscuration by other features or because there are too few lines or bands in the same transition array or progression to make the identification convincing. Additional features, usually quite weak, have been observed, but have received no satisfactory identification.

λ (A)	Atom or Molecule	Multiplet or band	λ (A)	Atom or molecule	Multiplet or bend
2972.325	[0]	Transauroral	3857.18*	OII	13
3116.7	N.	2P(3-2)	3857.9	N:	1N(2-2)
3136.0	N,	2P(2-1)	3872.45*	OII	11
3159.3	N.	2P(1-0)	3875.82*	OII	13
3192. •	N.	VK(4-11)	3882.45*	OII	11
3198.	N ₁	VK(1-9)	3883.15*	OII	12
3268. *	N,	VK(2-10)	3884.3	N:	1N(1-1)
3268.1*	N.	2P(4-4)	3912.0*	OII	17
3285.3	N.	2P(3-3)	3914.4	N:	1N(0-0)
3309.	N.	2P(2-2)	3919.287.	OII	17
3339.	N.	2P(1-1)	3943.0	N.	2P(2-5)
3371.3	N.	2P(0-0)	3945.048*	OII	6
3425.	N.	VK(1-10)	3947.5	OI	3
3466.4	INI	Transauroral	3948. •	N.	VK(4-14)
3469. •	N.	2P(3-4)	3954.372	OII	6
3500.5*	N.	2P(2-3)	3955.851	NII	6
3502	N.	VK(2-11)	3973.263	OII	6
3536.7	N.	2P(1-2)	3978.	N.	VK(1-12)
3548.9	N	IN(3-2)	3982.719	OII	6
3563.9	N:	IN(2-1)	3994.996	NII	12
3576.9	N.	2P(0-1)	3998.4	N.	2P(1-4)
3582.1	N:	1N(1-0)	4026.080	NII	40
3602.	N.	VK(0-10)	4035.087	NII	39
3671.9	N.	2P(3-5)	4041.321	NII	39
3683.	N.	VK(1-11)	4043.537	NII	39
3692.44	OI	6	4044.75*	NII	39
3710.5	N.	2P(2-4)	4045. •	N.	VK(5-15)
3712.75*	OII	3	4057.00*	NII	39
3726.16	[011]	Nebular	4059.4	N.	2P(0-3)
3727.33*	011	3	4069.8	OII	10
3728.91	[011]	Nebular	4072.164	OII	10
3749.49	OII	3	4072.	N.	VK(2-13)
3755.4	N.	2P(1-3)	4075.868	OII	10
3767.	N.	VK(2-12)	4078.862*	OII	10
3804.9	N.	2P(0-2)	4092.940-	OII	10
3835.4*	N:	1N(3-3)	4094.8*	N.	2P(4-8)

λ(A)	Atom or molecule	Multiple or band	^t λ(A)	Atom or molecule	Multiple or band
4110.9*	N	1N(6-7)	4554 1	NP	
4112.029-	OII	21	4564 78-	NUT	IN(3-5)
4120. •	OII	20	4574 3	NII	14
4121.3*	N;	IN(5-6)	4590 971-	NI	2P(1-6)
4121.48*	OII	19	4596 174.	OII	15
4141.8	N.	2P(3-7)	4500 7	NI*	15
4151.46*	NI	6	4601 478	NIT .	IN(2-4)
4166.8	N	1N(3-4)	4607 153	NII	5
4169. •	N.	VK(3-14)	4621 303	INIT	5
4169.230.	OII	10	4630 537	INII	5
4171.608	NII	43	4638 854	NII	5
4176.164	NII	42	4038.834	OII	1
4185.456	OII	36	4640 130	on	1
4189.788	OII	36	4649.139	on	1
4199.1	N:	1N(2.3)	4650.041	OII	1
4218	N.	VK(0-12)	4651 635	Ni	IN(1-3)
4223.04*	NI	116(0-12)	4001.033	on	1
4236.5	N:	IN(1-2)	4700.234	on	1.000
4237.0*	NII	48	4705.2	N,	1N(0-2)
4241.787	NII	47	4780 54	N.	VK(5-17)
4241.787	NII	48	4701 .	NII	20
4278.1	N:	1N(0.1)	4791.	NII	20
4317.139	OII	11(0-1)	4010.200*	NII	20
4319.631	OII	5	4057.	N,	VK(2-15)
4320. •	N.	VK(1.13)	4001.332	нβ	1
4336.865	OII	1 (1-13)	4090.93*	OII	28
4340.468	Hy	÷	4093.20	NII	1
4343.6*	N.	20/0 4	4914.90	NI	9
4345.562	OII	21 (0-4)	4924.00	OII	28
347.425	OII	16	4935.03	NI	9
1349.426	OII	10	4941.12*	OII	33
351.269	OII	16	4957.9	N	1N(4-7)
368.30	OI	10	4908.	OI	14
369.28-	OII	26	4987.377*	NII	24
414.909	OII	20	5001.3	NII	19
416.975	OII	2	5002.092	NII	4
425.	N.	VK/2.14	5005.140	NII	19
452.377	011	VIA(2-14)	5016.620	NII	4
466.6*	N:	IN/6 P	5010.38/	NII	19
485.9*	N	1N(6-8)	5025.005	NII	19
488.15*	NII	111(3-7)	5045.098	NII	4
507.559*	NII	21	50/0.0	N	1N(2-5)
515.9*	N:	INCLO	5109 5	N	1N(1-4)
534.	N.	VK(LIG	\$200.7	INIJ	Nebular
	10.000		3200.1	[NI]	Nebular

TABLE 5.4 (cont.)

Emission lines in Auroral Spectra

λ(A)	Atom or molecule	Multiplet or band	λ (A)	Atom or molecule	Multiplet or band
5228.3	N:	1N(0-3)	6482.07	NII	8
5295.7	0:	1N(2-0)	6544.8	N _a	1P(7-4)
5330.	OI	12	6562.817	Ha	1
5436.	OI	11	6583.6*	[NII]	Nebular
5454.26*	NII	29	6623.6	N.	1P(6-3)
5478.2.	N.	IP(9-4)	6704.8	N.	1P(5-2)
5577.345	IOI	Auroral	6764.0*	N,	IP(11-9)
5631.9	0:	1N(1-0)	6788.6	N.	1P(4-1)
\$666.64	NII	3	6853.0	N	Mein.(3-0)
5676.02	NII	3	6859.3-	N.	1P(10-8)
5679.56	NII	3	6875.2	N.	1P(3-0)
5686.21	NII	3	6957.7	N.	1P(9-7
5710.76	NII	3	7036.8	N:	Mein.(4-1)
\$730 67	NII	3	7059.5*	N.	1P(8-6)
\$747 79*	NII	9	7164.8	N.	1P(7-5
\$752 .	Ň.	VK(1-16)	7239.9	N:	Mein.(5-2)
\$754 8	INUI	Autoral	7254.4*	OI	20
\$755 3.	N.	1P(12-8)	7274.0	N.	1P(6-4
5767 43.	NII		7318.6	roin	Aurora
5904 3+	N.	1P(11-7)	7319.4	iom	Aurora
5854 4	N.	IP(10-6)	7329.9	IOII	Aurora
5880 051)			7330.7	IOIN	Aurora
5805 023 1	NaI	1	7349.8*	N.	1P(11-10
5006 0*	N.	1P(9-5)	7387.2	N.	IP(5-3
5050.0	N.	1P(8-4)	7479.0*	N.	1P(10-9
5060 03-	NIT	28	7504.7	N.	1P(4-2
\$073 4*	0:	1N(1-1)	7612 9*	N.	1P(9-8
6013 6	N	1P(7-3)	7626.8	N.	1P(3-1)
6036 4		1N(0-0)	7684	0.	Atm.(1-1)
6046 .	OI.	22	7752.0*	N.	1P(8-7
6068 .	N.	VK(3-18)	7753.7	N.	1P(2-0
6060 7	N	1P(6-2)	7774.	01	
6127 4	N	19(5-1)	7825.7	N	Mein (2-0
6157	0	10	7896 9+	N.	1P(7-6
6185 3.	N	10(12.0)	7987	OI	19
(106 0+	N	10(4.0)	7995 12	01	19
0100.0-	N	10(11-0)	8047 9*	N.	1P(6-5
6200 100	ion	Nebular	8053 6	N	Mein.(3-1
6300.308	N	1P(10.7)	8184 80	NI	
6342.9	IOU	Nabular	8187 95	NI	
6363.790	[UI]	100.0	8205 5-	N	1P/5-4
0394.7	0.	1N(0-1)	8216 28	NI	
0418.7	0,	114(0-1)	0210.20		
e 1	01		8773 07	DV I	

2000	Atom or	Multiplet		Atom or	Multiplet
λ (Α)	molecule	or band	λ (A)	molecule	or band
8293.4	N;	Mein.(4-2)	9145.3	N:	Mein.(1-0)
8446.5	01	4	9431.2*	N;	Mein.(2-1)
8542.5	N.	1P(3-2)	10,395.4	INI	Auroral
8598.	0,	Atm.(0-1)	10,404.1	INI	Auroral
8629.24	NI	8	10,510.	N.	1P(0-0)
8680.24	NI	1	10,830. •	HeI	1
8683.38	NI	1	11,036.2	N:	Mein (0-0)
8703.24	NI	1	11,820.2*	N:	Mein.(2-2)
8711.69	NI	1	14,523.	N:	Mein.(0-1)
8718.82	NI	1	14,663. •	0.	IR Atm.(0-1)
8723.0	N.	1P(2-1)	15,114.	N:	Mein.(1-2)
8912.4	N.	1P(1-0)	15,748.	N:	Mein.(2-3)
9060.6*	NI	15	(CONTRACTION (C)	1.1.1.1.1.1.1	

5.1.2. Forbidden Atomic Lines²

Oxygen—The strongest emission in the visible region is ordinarily the $[OI]_{32}$ yellowish-green line, first measured by Angström [1868*a*, 1869*a*] and soon after confirmed by Struve [1869*a*] and many others. Angström and others found the green line to be present even when visible auroral structure was not, but it was many years before the existence of the airglow was firmly established (see Section 9.1.2).

Precise measurement of the green-line wavelength was first accomplished by Babcock [1923a] with an interferometer. Measurements by Cabannes and Dufay [1955a] give the wavelength as 5577.345 \pm 0.003 A. Production of the green line in the laboratory by McLennan and Shrum [1925a] eventually led to the identification of the green line as the [OI]₃₂ transition (see the discussion in Section 9.1.2).

The $[OI]_{31}$ line at 2972.325 A (Sayers and Emeleus [1950a]) should have a photon intensity of about one sixteenth that for λ 5577 [OI]₃₂. Because of ozone absorption it is not observable from the ground.

Zöllner [1870a] made the first measurement of the red line of $[OI]_{21}$ at 6300 A. The wavelengths of the two lines given in Table 5.1 are from the interferometer measurements of Cabannes and Dufay [1955a, b, 1956a, b]. The identification was made by Frerichs [1930a], who computed the energy levels from observations of the ultraviolet spectrum

⁴ A summary of the transition probabilities, lifetimes, and energy levels associated with oxygen and nitrogen forbidden lines is given in Appendix VI. The spectroscopic nomenclature is discussed in Section 1.1.2.
Emission lines of oxygen atom (OI)

Figure 1.3. Excited states of the oxygen atom that give rise to forbidden transitions prominent in auroral emissions, and their lifetimes (after Roach and Smith, 1967).

Emission lines of nitrogen molecule (N₂)

FIG. 5.32. Electronic states and band systems of N₂ and N₂⁺. The dashed transition lies in the far ultraviolet and has not been detected in aurora.

collide with the atmosphere, and excite them.

Because the auroral particles move along the field line, colliding sequentially until they stop.

Height profile of ionization by precipitated electrons

Figure 1.4. Production of ion-electron pairs per unit path length of primary electrons with various initial energies. After Rees (1963).

Height profile of emission rate by precipitated electrons

Quenching is effective at lower altitudes for 630.0 nm, because its life time is so long (110 sec).

Proton Aurora

Spatially spread \Rightarrow diffuse type

Spectrum of Proton Aurora

Doppler broadening and shifting

Height profile of ionization by precipitated protons

Fig. 4.38. Height profiles for ionization produced by monoenergetic protons with an isotropic pitch angle distribution by Eather (1970). (Courtesy Annales de Géophysique.)

Aurora :

Emissions from atmospheric constituents at 100 ~ 500 km altitude, excited by the Auroral particles

Green line : from Oxygen atom

Auroral curtain : Showing the trajectory of the auroral particles along the earth's field lines

Red : from Oxygen atom Pink : from Molecular Nitrogen

The Red Aurora : from Oxygen atom

Blue, purple : Molecular Nitrogen

Lower viewing angle ...

Higher viewing angle ...

Arc

Looking up along the earth's magnetic field line

Corona

Corona

Large scale vortex : Spiral

Spiral

Diffuse Aurora Black Aurora Pulsating Aurora

Diffuse Aurora Black Aurora Pulsating Aurora

Pulsating Aurora

Pulsating Aurora observed by REIMEI

Japanese small satellite launched on 24 Aug, 2005 altitude: 610 km instrument : MAC, ESA/ISA high spatial & time resolution

Low-latitude Red Aurora : from Oxygen atom

Low latitude Aurora appears during a large storm-time

22 Oct, 1989

Low latitude Aurora appears near the horizon

Auroral Particles

Japan

Auroral

Zone

magnetic field line

Aurora from Space Shuttle

Aurora from Space Shuttle

Where auroral particles come from ?

Earth's magnetic field

Magnetosphere territory of the earth's magnetic field

Auroral particles come from the plasma sheet

Various domain in the magnetosphere

Precipitating electron spectra

ISIS-2

Winningham et al. [1975]

Discrete Aurora & Diffuse Aurora

Discrete aurora : BPS type electron precipitation Diffuse aurora : CPS type electron precipitation

Energy spectrum of auroral electrons

Rocket observation for Discrete Aurora

accelerated monoenergetic peak

Energy spectrum of auroral electrons

Rocket observation for Diffuse Aurora

Maxwell distribution
Energy spectrum of auroral electrons

FAST satellite "inverted-V"

spectra

Upward field-aligned Electric field

at 1000~10000 km to accelerate the auroral electrons

Current closure around the Auroral arc

Auroral particle precipitation mechanism

3D structure using Auroral tomography

Auroral small structure by narrow FOV camera

Auroral Substorm Classical Morphology by *Akasofu* (1964)

Modification to the Akasofu Classical Morphology

Proton Auroral Substorm

Fukunishi (1975)

Modification to the Akasofu Classical Morphology Discovery of the Growth phase

Modification to the Akasofu Classical Morphology Localization & pre-midnight preference of Onset

Modification to the Akasofu Classical Morphology North-South aligned (N-S) aurora

Henderson et al. (1998)

N-S Aurora or Auroral Streamer

projection of the fast earthward flow ?

Figure 3. Schematic picture of transient plasma jets (updated from Sergeev et al., [1996a]). Equatorial mapping of basic spacecraft is also shown. Strong plasma jet is just passing in the equatorial plane past the equatorial footpoint of Interball-Auroral and Geotail spacecraft and is approaching the inner magnetosphere, as occurred at ~2025 UT on December 10, 1996. Precipitation of electrons accelerated in the jet-associated upward field-aligned current forms the auroral streamer seen on the Polar UVI images.

Sergeev et al. (2000)

Growth phase in the magnetosphere

Substorm in the magnetosphere

NENL (Near Earth Neutral Line) model

Current Disruption model

Lui (1991)

Other issues : lonospheric effect on aurora

Plate 1. Intense discrete auroras occur much more frequently in darkness than in sunlight. This effect is attributed to the increase in ionospheric conductivity caused by sunlight. The above plots show the probability of observing intense discrete auroras (.5 ergs cm-2 s-1) in corrected magnetic coordinates, with the continental outlines shown at 0600 UT. Newelll (2001)

Auroras on the other planets

PRC98-04 • ST Scl OPO • January 7, 1998 J. Clarke (University of Michigan) and NASA

Jupiter

Saturn Aurora HST • STIS PRC98-05 • ST Scl OPO • January 7, 1998 • J. Trauger (JPL) and NASA

Conditions for the planetary aurora

The planet should have
Atmosphere
Source of auroral particles
Own magnetic field

There are still many un-resolved problems for Aurora

- Mechanism of the Pulsating Aurora
- Exact correspondence between the Auroral and Magnetospheric substorms
- Source mechanism of the field-aligned
 Electric field
- ♦ Source mechanism of the various auroral motion (Curl, Spiral, Spliting, ...)
- Acceleration mechanism of auroral protons