Syowa - Iceland Conjugate Auroral Study - a Review

¹<u>Akira Kadokura</u>, ¹Natsuo Sato, ¹Hisao Yamagishi, ¹Makoto Taguchi, ²Takayuki Ono, ²Shoichi Okano, ³Keisuke Hosokawa, ⁴Thorsteinn Saemundsson, and ⁴Gunnlaugur Bjornsson

¹ National Institute of Polar Research, Tokyo, Japan
 ² Tohoku University, Japan
 ³ The University of Electro-Communications, Tokyo, Japan
 ⁴ University of Iceland

Musk ox safaris

Transport in the Coupled Solar Wind - Geospace System Seen From a High-Latitude Vantage Point

The Greenland Space Science Symposium, to be held 4-9 May 2007 in Kangerlussuaq, Greenland, will strive to advance our understanding of solar-terrestrial interaction by focusing on old and new observations from very high latitudes, as well as related theory, modeling, and numerical simulations. The meeting will provide opportunity for presentations from, and coordination between, existing and planned networks of ground-based instruments and space probes. Modeling results indicating specific needs for additional data acquisition to address scientific issues and/or to validate models are also particularly relevant.

Greenland was selected as the symposium location to celebrate the rich history of Greenland as a base for scientific instruments providing a window into the geospace system. **The symposium is planned as part of the International Polar Year 2007-2008**.

Program Committee:

Jurgen Watermann (chair), Bob Clauer, Eric Donovan, Eigil Friis-Christensen Christian Hanuise, Kirsti Kauristie, Jeff Thayer (co-chair), John Kelly, Lou Lanzerotti Volodya Papitashvili, Todd Pedersen, Alan Rodger, Natsuo Sato, Bob Schunk Susanne Vennerstrøm, Ray Walker, Allan Weatherwax

Invited Speakers - History And Outlook

Peter Banks **Richard Behnke** Asgeir Brekke Robert Clauer Eigil Friis-Christensen Michael Hesse Bengt Hultqvist Torben S. Jørgensen John D. Kelly Hannu Koskinen Knud Lassen Alan Rodger Peter Stauning

retired from The University of Michigan, USA The National Science Foundation, USA The University of Tromsø, Norway Virginia Polytechnic Institute and State University, USA **Danish National Space Center** National Aeronautics and Space Administration, USA Institute of Space Physics, Sweden retired from The Danish Meteorological Institute SRI International, USA University of Helsinki retired from The Danish Meteorological Institute British Antarctic Survey, UK The Danish Meteorological Institute

Invited Speakers - Technical Scientific Sessions

Irfan Azeem Joseph Borovsky Mervyn P. Freeman Keisuke Hosokawa Umran S. Inan Akira Kadokura Hannu Koskinnen Mark Lester Gang Lu Ian W. McCrea David Murr Shin-Ichiro Oyama Scott Palo Frederic Pitout Robert W. Schunk Joshua Semeter Peter Stauning Jean-Pierre St-Maurice Allan Weatherwax

Embry-Riddle Aeronautical University, USA Los Alamos National Laboratory, USA British Antarctic Survey, UK The University of Electro-Communications, Japan Stanford University, USA National Institute of Polar Research, Japan The University of Helsinki, Finland The University of Leicester, UK NCAR, USA Rutherford Appleton Laboratory, UK Dartmouth College, USA Nagoya University, Japan The University of Colorado, USA The Grenoble Laboratory of Planetology, France Utah State University, USA Boston University, USA The Danish Meteorological Institute The University of Saskatchewan, Canada Siena College, USA

Attendee : total 70

Outline of today's talk

- Previous works before our study.
- Geomag. features of Syowa Iceland conjugate pair
- Brief review of our conjugate auroral studies so far Conjugacy in MSP (Meridian Scanning Photometer) data Morphology using ATV (All-sky TV) data Conjugacy of Pulsating aurora
- Summary

Conjugate Observation

by Natsuo Sato

Conjugate Stations

Previous Study during IGY period

All-sky camera data on March 13, 1958 (DeWitt, JGR, 1962)

Conjugate auroral study using the data during IGY period

In a later (unpublished) analysis of all-sky camera data obtained on six nights at a higher (70°) dp latitude (Reykjavik, Iceland, and Syowa, Antarctica), DeWitt noted considerably fewer similiarities in auroral features. Wescott and Mather [1964], using the same data, attempted to identify individual forms and trace their motion. Although the correlations of shape and intensity were not very good, Wescott and Mather had the impression that the conjugate positions of the two stations did not remain stationary and that apparent deviations of more than 400 km would have been necessary to reconcile some of the displays if they were magnetically conjugate. There was a tendency for the southern auroras to be located equatorward of the northern conjugate auroras, but the data did not permit them to determine whether a displacement in longitude might also be involved.

Syowa - Iceland conjugate All-sky data during IGY period 6 nights

Belon et al., JGR, 1969

Previous Study using the Jet Aircraft Flight between Alaska - New Zealand during 1967 ~ 1971 (18 flights)

along 256° MM Belon et al., JGR, 1969

Previous Study using the Jet Aircraft Flight Motion of Conjugate Points during Substorm

Previous Study using the Jet Aircraft Flight Time difference (~ 5 min) of the breakup start

Stenbaek-Nielsen et al., JGR, 1972

Previous Study using the Jet Aircraft Flight Intensity difference N > S (x ~ 1.3)

Stenbaek-Nielsen et al., JGR, 1973

Difference in B at conjugate points and Auroral Occurrence

Fig. 1. Difference in magnetic field strength at 300 km at conjugate points along 65° invariant latitude. The lower plot gives per cent occurrence of aurora observed on all-sky camera data from auroral stations located between 64° and 70°N geomagnetic latitude. The data cover the period February 14 through March 9, 1958.

Stenbaek-Nielsen et al., JGR, 1973

Theoretical Estimate of the Intensity Ratio

for Strong diffusion & Isotropic flux

$$\sin^2 \alpha = B_0/B_m \tag{1}$$

$$\alpha_N \cong (B_0/B_N)^{1/2}$$
 and $\alpha_s \simeq (B_0/B_s)^{1/2}$ (2)

 $R(\alpha) = \alpha_N / \alpha_S \cong (B_S / B_N)^{1/2}$

The number of particles n_1 crossing the equatorial plane with pitch angles $< \alpha$ per unit time is then

$$n_1 = A_0 \cdot \pi \cdot j_1 \cdot \sin^2 \alpha \simeq A_0 \pi j_1 \alpha^2 \qquad (4)$$

(3)

$$R_{1n} = n_{1N}/n_{1S} = B_S/B_N = 1.15$$
 (5)

 $A_N B_N = A_S B_S \tag{6}$

Most auroras are in the form of thin sheets extending from horizon to horizon. The overall intensity ratio R_s will be equal to the ratio of the thicknesses of the auroral sheets t_s and t_s :

$$R_{s} = \frac{t_{N}}{t_{s}} = \left(\frac{A_{N}}{A_{s}}\right)^{1/2} = \left(\frac{B_{s}}{B_{N}}\right)^{1/2} = 1.07 \quad (7)$$

If there is potential difference

$$W_{N} = W_{0} + W_{*}/2$$
(11)

$$W_{S} = W_{0} - W_{*}/2$$
(12)

$$\frac{B_{0}}{W_{\perp 0}} = \frac{B_{N}}{W_{\perp N}} = \frac{B_{S}}{W_{\perp S}}$$
(12)

$$\sin^{2} \alpha_{N} = \frac{W_{\perp 0}}{W_{0}} = \frac{B_{0}}{B_{N}} \left(1 + \frac{W_{*}}{2W_{0}}\right)$$

$$\sin^2 \alpha_s = \frac{W_{\perp 0}}{W_0} = \frac{B_0}{B_s} \left(1 - \frac{W_s}{2W_0} \right)$$
(13)

$$R_{*} = \frac{n_{N} \cdot W_{N}}{n_{S} W_{S}} = \frac{B_{S}}{B_{N}} \left[\frac{1 + (W_{*}/2W_{0})}{1 - (W_{*}/2W_{0})} \right]^{2}$$
$$\approx \frac{B_{S}}{B_{N}} \left(1 + 2\frac{W_{*}}{W_{0}} \right) \quad (14)$$

Stenbaek-Nielsen et al., JGR, 1973

Syowa-Iceland Conjugate Observation

♦ 1977 ~ 1978 : First campaign
 IMS (International Magnetosphere Study) period
 Only summer time; Husafell ~ Syowa

From 1984 : Continuous observation Collaboration with Iceland University Husafell, Isafjordur, Tjornes ~ Syowa, Mizuho, Molodezhnaya

Instruments:

Fluxgate, Induction, Riometer, VLF, All-sky camera, All-sky TV, Scanning photometer (H , 5577), Fixed photometers (zenith, N30°, S30°)

Syowa-Iceland Conjugate Observation Station distribution in 1984

Conjugate StationsHusafellTjornes

Syowa

Block diagram of the Iceland system in 1984

Fig. 1. A block diagram of the observation system at Husafell. The all-sky TV cameras, scanning and fixed direction photometers were set up in 1984; other equipment had been constructed in 1983.

	SYO	HUS	TJR	AED
Fluxgate magnetometer				
Induction magnetometer				
VLF receiver				
Riometer				
Imaging Riometer	1992	1997	1990	
All-sky TV camera (night-viewer)				
All-sky monochromatic Imager		2005		
Meridian Scanning Photometer				
Fabry-Perot Imager				
SuperDARN radar				
MF-radar				
Ionosonde (NiCT)				
VHF Doppler radar (NiCT)				
FM/CW radar (NiCT)				

Conjugate Stations

Geomagnetic mapping

SuperDARN radar in both hemispheres

Imaging Riometer network

Yamagishi et al., APUAR, 2000

Secular variation of the conjugate point of Syowa

Ono, Memoirs of NIPR, 48, 1987

Secular variation of the magnetic field

Iceland

⊢

Syowa

Ono, Memoirs of NIPR, 48, 1987

Seasonal & Daily variation of the conjugate point of Syowa

at 110 km using Tsyganenko and Usmanov (1982) Ono (Memoirs of NIPR, 48, 1987)

Activity dependence of the Daily variation

at 90 km using Tsyganenko (1989)

Fujita et al. (Antarc.Rec, 42, 1998)

Geographic & Geomagnetic Parameters

1985.0 / 2007.0

Station	Glat (deg)	Glon (deg)	Inv.lat (deg)	Mlon (deg)	MLT(hr) at 0 UT	L value	D (deg)	l (deg)	B (nT)	B _S /B _N
Syowa	-69.00	39.58	66.22 66.37	71.44 72.35	23.65 23.68	6.14 6.22	-46.50 -49.20	-64.70 -63.64	44365 43114	-
Isafjordur <mark>Aedey</mark>	66.08 66.09	-23.13 -22.65	67.65 <mark>66.99</mark>	68.81 66.69	23.48 23.30	6.92 6.54	-24.29 -18.27	76.83 76.77	52563 52775	0.84 0.82
Husafell	64.67	-21.03	65.87 65.28	69.36 67.04	23.52 23.33	5.99 5.72	-22.00 -16.58	75.93 75.87	52151 52410	0.85 0.82
Tjornes	66.20	-17.12	66.80 66.35	73.76 71.30	23.81 23.61	6.45 6.22	-20.29 -15.05	76.51 <mark>76.55</mark>	52145 52472	0.85 0.82

All-Sky Image and Geomagnetic mesh at 120 km altitude

TJORNES

SYOWA

at 23:23:00 UT on Sep. 26, 2003

Difference in FOV on Geomagnetic plane

TJORNES

SYOWA

at 120km at 23:23:00 UT on Sep. 26, 2003 (elevation > 10°)

Difference in B & ∇B

Syowa-Iceland Conjugate Study

Published refereed papers : 136

♦ Magnetic Pulsation : 38

◆ ELF/VLF wave : 26

Aurora : 23

Project report, introduction : 13

◆ SuperDARN : 13

Magnetic DC variation : 7

Imaging Riometer (IRIO) : 7

♦ Balloon : 5

♦ CNA : 2

Conjugacy in MSP data

Pre-breakup

Breakup

Post-Breakup

557.7 nm

Similar as a whole. However, small scale variation is frequently different.

Makita et al. (Memoirs of NIPR, 18, 1981)

Non-conjugacy in MSP dataRecovery PhaseDuring positive

Η

557.7 nm Makita et al. (Memoirs of NIPR, 18, 1981)

Comparison between Proton and Electron aurora H 557.7 nm (OI)

At the breakup phase, H at HUS is higher than at SYO.

Sato et al. (GRL,13, 1986)

Comparison between Proton and Electron aurora H 557.7 nm (OI)

During expansion phase, poleward H is enhanced. Equatorward H is diminished within the pulsating auroral region.

Sato et al. (GRL,13, 1986)

Non-conjugacy in MSP does not mean real non-conjugacy Sato et al. (Memoir of NIPR,48, 1987)

Longitudinal displacement of the westward drifting N-S aurora

MSP and Magnetic variation

Pi2, Pi1B, Pi1C, Westward electrojet, Counter electrojet

All are very similar, and well correspond to auroral variation

> Sato et al. (Memoir of NIPR,48, 1987)

Morphology Study using ATV (All-sky TV) data Before onset September 26, 1984 2204:24 UT HUSAFELL SYOWA 69° 69° invariant latitude 66⁰ 66 63° 63

Large scale similar, Small scale dissimilar HUS: homogeneous, SYO: ray structure & curls

77°

70°

magnetic longitude

63°

63°

Fujii et al. (Memoir of NIPR,48, 1987)

70⁰

77[°]

Eastward motion similar, Vortex (fold) scale dissimilar : HUS > SYO & Longitudinal displacement

Fujii et al. (Memoir of NIPR,48, 1987)

Conjugacy and Non-conjugacy of small breakup

Sep. 12, 1988

Sato et al. (JGR, 103, 1998)

Non-conjugate auroral breakup. Breakup started earlier at Syowa..... But ... seems a little subjective ... ?

Non-conjugate breakup? Sato et al. (JGR, 103, 1998)

HUS

2226:08

Conjugacy of small breakup

Sep. 12, 1988

Geographic coordinate

HUS

Latitudinal scale is different, larger than the difference in B & ∇B Sato et al. (JGR, 103, 1998)

Large longitudinal displacement

Large displacement : ~ 1 hr During recovery phase of large substorm *Minatoya et al. (JGG, 48, 1996)*

Large longitudinal displacement Minatoya et al. (JGG, 48, 1996)

Large longitudinal displacement

Minatoya et al. (JGG, 48, 1996)

Large longitudinal displacement Keogram Sep. 10, 1991

Minatoya et al. (JGG, 48, 1996)

Longitudinal displacement depending on the IMF clock angle Østgaard et al. (JGR, 2004)

Large longitudinal displacement due to IMF?

Observed displacement is larger than the clock angle effect.

Østgaard et al. (JGR, 2004)

for 1 hr $\theta c = 261 \text{ deg}$

September 26, 2003 event : The best conjugate event in the 22 year history

Iceland (Tjornes)

SYOWA Sato et al. (GRL, 32, 2005)

Tracing temporal variation of conjugate location of Syowa

Sato et al. (GRL, 32, 2005) Clear displacement appears during recovery phase.

IMF data Geotail

Østgaard et al. (JGR, 2004)

Sep.26, 2003 2 BxGSM(nT) 0 -2 T - 8.3 min -6 for X = -10 Re4 ByGSM(nT) 2 -4 4 M.M. 2 BzGSM(nT) 0 -2 CLOCK ANGLE (deg) Wall Miles 0 22.0 23.0 21.5 22.5 23.5 24.0 TIME (UT)

(X, Y, Z)gsm = (29.0 ~ 28.6, 11.1 ~ 12.5, 2.4 ~ 1.9) Re ACE Vsw ~ 500 km/s

Conjugacy of Pulsating Aurora Patchy Type

Fujii et al. (GRL, 14, 1987)

Conjugacy of Pulsating Aurora Patchy Type

Appears almost simultaneously in phase

Fujii et al. (GRL, 14, 1987)

Conjugacy of Pulsating Aurora Expansion Type

Fujii et al. (GRL, 14, 1987)

Conjugacy of Pulsating Aurora Expansion Type

Often appears almost out of phase

Fujii et al. (GRL, 14, 1987)

Conjugacy of Pulsating Aurora *Minatoya et al. (JGG, 47, 1995)*

Correlation is poor in every aspect ; spatial pattern, periodicity, period

Date Time	: 91.9.9 e: 22:54:	40 - 22	:55:00 UT
32	114	196	[Digit]
8	12	16	[%]
20	34	48	[%]
2	6	10	[sec]

Minatoya et al. (JGG, 47, 1995)

Correlation is poor in every aspect ; spatial pattern, periodicity, period

Date Time	e: 91.9.9 e: 22:55:	30 - 22	:55:50 UT
32	114	196	[Digit]
8	16	24	[%]
20	34	48	[%]
2	6	10	[sec]

Conjugacy of Pulsating Aurora *Sato et al. (GRL, 25, 1998)*

Overall variations are similar. But, correspondence of each patch is unclear.

Even if the patch shape and type are similar, period is different.

Watanabe et al. (GRL, 2007, submitted)

Event on Sep. 26, 2003

Overall structure is displaced longitudinally about 3.6 deg.

Auto-correlation coefficient

Sep. 26, 2003

Shape & location are similar. Sometimes high periodicity differently appears.

Watanabe et al. (GRL, 2007, submitted)

Sep. 26, 2003

Period

Shape is similar, but period is different. Some appear only one hemisphere.

Watanabe et al. (GRL, 2007, submitted)

Summary

- Large scale conjugate, small scale non-conjugate, is frequently observed.
- Large longitudinal displacement beyond the clock angle effect, is observed during recovery phase.
- Latitudinal scale difference beyond the difference in B and VB, is observed at a small breakup.
- As for the pulsating aurora, even if the shape and type are similar, other features (periodicity, period) are frequently dissimilar. Sometimes, patch appears only one hemisphere.

Summary

Such dissimilarity or non-conjugacy should be caused by some processes between the equatorial plane and ionosphere.

Difference in E_{||}? Difference in Field-Aligned Current intensity ? Where is the source region for the pulsating auroral modulation ?

To solve these problems, simultaneous multi-point observation along a same field line is essential. But