Contents | Abstract Abstract | 3 | |---|---| | Chapter 1. General introduction | | | 1.1. Current status of the substorm study 1.1.1 Auroral substorm and associated magnetospheric process (a) Development of the global auroral imager (b) Classical morphology (c) Diffuse aurora, onset arc, and onset location (d) Premidnight preference of the onset region (e) Double oval configuration during the recovery phase (f) North-south structured aurora (g) Growth phase (h) Precursor phenomena prior to the onset (i) Onset signatures (j) Evolution after the onset (k) A typical example of the global auroral substorm evolution 1.1.2 A summary of the still un-resolved problems 1.1.3 Existing substorm models 1.2. Purpose and contents of this study | 5
7
9
11
12
13
13
28
32
40
45
48
48
55 | | Chapter 2. Overview of the auroral substorm observation in 1989 | | | 2.1. Observations by the UV imager aboard the AKEBONO satellite in 1989 2.1.1 Instrumentation 2.1.2 Auroral substorm evolution observed by the ATV-UV in 1989 2.2. Observations at Syowa and Asuka stations in 1989 2.2.1 Instrumentation 2.2.2 Auroral substorm evolution observed at Syowa and Asuka stations in 1989 | 57
58
61
62 | | Chapter 3. Detailed study of the event on June 6-7, 1989 | | | 3.1. Growth phase evolution of nightside auroral activities and ionospheric convection toward expansion phase onset | | | Abstract. 1. Introduction 2. Observations | 67
67 | | 2.1. Overview 2.2. Instrumentation | 70
72 | | 2.3. Growth phase features (1) Geosynchronous observation (2) Ground-based magnetic observation (3) Onset timing (4) Auroral observation at Syowa and Asuka stations (5) Plasma flow observation by Halley HF-radar (6) Spatial and temporal relationship between observations (6.1) Two-dimensional evolution (6.2) Comparison with satellite observations | 74
75
75
78
81
83
85 | | 3. Discussions 3.1. Growth phase evolution in the ionosphere 3.2. FEM arc 3.3. NPSBL aurora 3.4. Growth phase evolution in the magnetosphere | 90
94
95
97 | | 4. Summary and Conclusions 3.2. Stepwise auroral bulge evolution during expansion phase | 99 | | Abstract 1. Introduction | 101
101 | |---|------------| | 2. Observations | 101 | | 2.1. Solar wind and geomagnetic conditions | 103 | | 2.2. Instrumentation | 104 | | 2.3. Overview of global auroral evolution | 105 | | 2.4. Detailed evolution | | | (1) Timing between the onset phenomena | 107 | | (2) Evolution during the Stage-1 and Stage-2 | 109 | | (3) Evolution during the Stage-3 | 112 | | (4) Observations at Asuka and Syowa stations | 114 | | (5) Observation at geosynchronous orbit | 117 | | 3. Observation summary and Discussions | 110 | | 3.1. Observation summary3.2. Comparison with previous observations | 119
121 | | 3.3. Evolution in the magnetosphere | 123 | | 3.4. Comparison with previous models | 128 | | 3.5. Generality of this substorm | 129 | | 4. Summary and Conclusions | 131 | | Chapter 4. Stepwise auroral substorm evolution observed by the | | | meridian scanning photometers at Syowa and Asuka stations in 19 | 989 | | 4.1. Purpose of this Chapter | 133 | | 4.2. Features of the auroral substorm evolution in the event on June 6-7, 1989 | 133 | | 4.3. Event selection and analysis procedure | 135 | | 4.4. Selected examples | 141 | | 4.5. Statistical results | 145 | | 4.6. Summary and conclusion of this Chapter | 146 | | Chapter 5. Summary and Conclusions of this study | 147 | | References | 150 |