The cause of the mid-latitude ionospheric plasma flow during storm recovery phase observed by the SuperDARN Hokkaido East Radar compared to AMPERE and TIEGCM data

Kohei Omori[1], Nozomu Nishitani[1], Tomoaki Hori[1], Gang Lu[2], Brian Anderson[3], Sarah Vines[3]

[1] ISEE, Nagoya University

- [2] National Center for Atmospheric Research
- [3] The Johns Hopkins University, Applied Physics Laboratory

Mid-latitude ionospheric electric field during a Geomagnetic Storm

- Due to magnetospheric-ionospheric coupling
 - Penetration of convection electric field
 - Occurs when the shielding is broken by a sudden increase in the convection electric field.
 - Overshielding
 - Occurs when the shielding electric field becomes dominant over the convection electric field.

- Due to ionospheric-thermospheric coupling
 - Disturbance Dynamo
 - Dynamo action due the neutral wind caused by Joule heating in the polar regions.
 - Generates westward flow in the mid-latitude ionosphere on the night side [Blanc and Richmond, 1980].

Latitudinal distribution of zonal drift velocity in the nightside ionosphere [Blanc and Richmond, 1980]

The westward plasma flow velocity due to Disturbance Dynamo gradually increases over a ~12 hours from the onset of the storm.

Motivation and Purpose

• Several previous studies using SuperDARN radar have mentioned the effects of Disturbance Dynamo.

Zou and Nishitani (2014)	Joshi et al. (2015)
 Reported that the westward ionospheric plasma drift velocity increases around 46° MLAT on the night side several hours after substorm onset by Superposed Epoch Analysis using the HOK data. 	 Studied ion-neutral particle interactions during a geomagnetic storm using North American SuperDARN radars and NATION Fabry-Perot interferometers.
 Concluded that those drifts were caused by the Disturbance Dynamo. 	 Showed that the velocities of neutral winds and ion drift coincide during the recovery phase of magnetic storms.

• They did not consider the effects of **electric fields of magnetospheric origins**, such as convection electric field penetration and Overshielding.

Purpose

• To study magnetospheric and thermospheric effects on ionospheric plasma flow during the storm recovery phase observed by SuperDARN Hokkaido East radar, using **AMPERE** and **TIEGCM** data.

Instrumentation and model

- SuperDARN (Super Dual Auroral Radar Network)
 - A global network of ground-based HF radars.
 - Observing the line-of-sight velocity of ionospheric plasma.

- Hokkaido East Radar (HOK)
 - It is located at the lowest geomagnetic latitude (37.3° N) among all the SuperDARN radars.
 - It covers the mid-latitudes (40-60° MLAT).

Instrumentation and model

- Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)
 - AMPERE is a magnetic field observation system to study the electrodynamic ٠ properties of the global magnetosphere-ionosphere coupling [Anderson et al. 2000].
 - Provides near-real-time magnetic field measurements using the Iridium satellite network.
 - Field-Aligned Currents are derived from magnetic signatures. ٠

Iridium satellite network https://www.polaris-as.dk/iridium-maritime/

2023/3/13

Instrumentation and model

- Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM)
 - TIEGCM, developed at the National Center for Atmospheric Research (NCAR) High-Altitude Observatory(HAO), is a global 3-D numerical model that simulates the coupled thermosphere/ionosphere system from ~97 to ~600 km altitude [Qian et al., 2013].
 - Data used in this study

TIEGCM 2.1

Dang, T., Zhang, B., Lei, J., Wang, W., Burns, A., Liu, H., Pham, K., and Sorathia, K. A.: Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry, Geosci. Model Dev., 14, 859–873, https://doi.org/10.5194/gmd-14-859-2021, 2021.

Storm event

Geomagnetic storm in March 2015

Main phase: 0618~2246 UT on the 17th

Recovery phase: 2246 UT on the 17th~

- Echoes were observed from 0900~1800 UT (1800~0300 LT)
- Similar to Disturbance Dynamo trend.

Result & Discussion (Comparison with AMPERE)

difference between upward FAC and downward FAC intensities. Upward **Region-2** FAC > Downward **Region-1** FAC

Result & Discussion (Comparison with AMPERE)

2023/3/13

Result & Discussion (Comparison with TIEGCM)

*TIEGCM data are at geographic latitude 143.75° GLAT.

- Observations of HOK and simulations of "zonal ion drift due to ExB & Wind" are consistent with each other.
- "Zonal ion drift due to wind (neutral-plasma collision at 350 km altitude)" is almost 0 m/s.
- ✓ Westward plasma flow observed at HOK is almost due to ExB drift.

Possible causes

- Polarization electric field by Disturbance Dynamo
- Penetration of convection electric field
- SAPS

Summary & conclusion

- We compared ionospheric plasma flows observed at HOK during the recovery phase of the geomagnetic storm in March 2015 with AMPERE and TIEGCM data.
 - The increase in the westward plasma flow velocity and the increase in the difference between the upward and downward FAC intensities are in good agreement.
 - when Region 1 upward FAC is predominant
 polar electric field penetration effect associated with substorm expansion is dominant.
 - when Region 2 upward FAC is predominant
 Overshielding effect associated with the substorm recovery phase is dominant.
 - Comparison with the TIEGCM showed that the F-region neutral winds had little effect (in terms of neutral-plasma collision) on this event.
 - ✓ In studying the effects of Disturbance Dynamo after geomagnetic storms, it is important to consider the effects of magnetospheric-originated electric fields, and comparisons with AMPERE and TIEGCM are an effective way.

Future work

- Study the quantitative relationship between FAC and mid-latitude electric fields.
- Study the magnitude of Disturbance Dynamo's effect on mid-latitude ionospheric electric fields.
- Study the effects of SAPS (relative location to the ionospheric trough region could provide more clues).

<u>Reference</u>

- Blanc, M., & Richmond, A. D. (1980), "The ionospheric disturbance dynamo", Journal of Geophysical Research, Vol. 85, No. A4, Pages 1669-1686, https://doi.org/10.1029/JA085iA04p01669
- Dang, T., Zhang, B., Lei, J., Wang, W., Burns, A., Liu, H., Pham, K., and Sorathia, K. A.: Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry, Geosci. Model Dev., 14, 859–873, https://doi.org/10.5194/gmd-14-859-2021, 2021.
- Hashimoto, K. K., Kikuchi, T., Tomizawa, I., & Nagatsuma, T. (2017), "Substorm overshielding electric field at low latitude on the nightside as observed by the HF Doppler sounder and magnetometers", Journal of Geophysical Research: Space Physics, Vol.122, Pages 10851–10863, <u>https://doi.org/10.1002/2017JA024329</u>
- Joshi, P.P., J.B.H. Baker, J. M. Ruohoniemi, J. J. Makela, D. J. Fisher, B. J. Harding, N. A. Frissell, and E. G. Thomas (2015), "Observations of storm time midlatitude ion-neutral coupling using SuperDARNradars and NATION Fabry-Perotinterferometers", Journal of Geophysical Research, Vol. 85, No. A4, Pages 1669-1686, <u>https://doi.org/10.1002/2015JA021475</u>
- Zou, Y., & Nishitani, N. (2014), "Study of mid-latitude ionospheric convection during quiet and disturbed periods using the SuperDARN Hokkaido radar", Advances in Space Research, Vol. 54, Pages 473–480, <u>https://doi.org/10.1016/j.asr.2014.01.011</u>