Fine-scale visualization of aurora in a wide area using color digital camera images from the International Space Station

Sota Nanjo [1], Yuta Hozumi [1], Keisuke Hosokawa [1], Ryuho Kataoka [2], Yoshizumi Miyoshi [3], Shin-Ichiro Oyama [3], Mitsunori Ozaki [4], Kazuo Shiokawa [3] and Satoshi Kurita [3] [1] The University of Electro-Communications, [2] National Institute of Polar Science, [3] ISEE, Nagoya University, [4] Kanazawa University

Introduction:

Optical observations of aurora borealis

- Various ground-based and space-based imagers have been employed
- Most imagers have not had sufficient spatial and temporal resolution in a wide area

The International Space Station (ISS)

- ✓ Flies at low (~400 km) altitude
- Takes thousands of upper atmosphere photographs including aurora borealis and aurora austrails with DSLR cameras (ISS images)
- ISS images have high spatial and temporal resolution in a wide area and they are all uploaded to NASA's website ("Gateway to Astronaut").
- However, they do not have accurate time and geographical information Previous study geolocating the ISS images [Riechert et al., 2015] Used star lights to estimate the imaging parameters (e.g., looking direction) ✓ Still has a few tens of kilometers errors due to the distance to the stars Difficult to evaluate the time accuracy in a quantitative manner Motivation of this study

Results & Discussion:

Calibration result

- The best parameter set gave a minimum mean distance of 2.2 pixels
- Standard deviation of time lag was 0.3 seconds

Time lag (s)	heta (deg.)	σ (deg.)	arphi (deg.)	AOV (deg.)	<i>k</i> ₁ (x 10⁻୨)	k ₂ (x 10 ⁻¹⁶)
-5.6	-86.41	-118.49	-86.17	72.50	-1.4	-1.4

Spatial structure of discrete aurora

- Compared with the EMCCD ASI data from Gakona, Alaska
- Confirmed the locations of two arcs agree within an accuracy of 0.5 degrees Spatial accuracy of the mapping is **10 - 20 km** 155°W 150°W 145°W 140°W 135°W 155°W 150°W 145°W 140°W 135°W 60°N 60°N 55°N 55°N 07:40:12.4 UT 07:40:12.4 UT 155°W 150°W 150°W 145°W 145°W 140°W 135°W 140°W
- Establish more accurate mapping method which can be used for detailed analyses of aurora using the other calibration method
- Evaluate time accuracy quantitatively

	Time res. (s)	Spatial res. (km)	FOV (km x km)	
ISS	1.0	0.1	1100 x 900	
THEMIS ASI	3.0	2.0	500 x 500	
EMCCD ASI	0.01	2.0	500 x 500	
IMAGE	120	120	2Re x 2Re	
Reimei	0.12	2.0	100 x 100	

Proposed Methods:

Calibration method using city light positions [Hozumi et al., 2015]

Spatial structure of PsA

- Compared with the EMCCD ASI data from Athabasca, Canada
- Confirmed the spatial structure shows good agreement only in the direction perpendicular to the line of sight of ISS camera

105°W

0 $\cos \sigma \rfloor 0$ $1 \int sin \sigma$ $-\sin\theta \quad \cos\theta$ $u_c = u \left(1 + k_1 r^2 + k_2 r^4 \right)$ $v_c = v \left(1 + k_1 r^2 + k_2 r^4 \right)$

Projection of ISS image to the altitude of aurora

- Calculate the intersection points of the line of sight vector (from ISS to each pixel) and the spheroid whose major and minor axes radius are Re + 100 or 110 km
- ✓ Select the one closer to the ISS as the correct point of aurora **Evaluating the accuracy of the mapping method**
- Compare the spatial structure of discrete aurora and the temporal variation **Future works**: of pulsating aurora (PsA) observed with both EMCCD ASI and ISS images When comparing, the EMCCD ASI data were down-sampled to 3 Hz
- Calculate the correlation coefficient by shifting the time by 0.1 seconds

Conclusions:

- Spatial accuracy of the proposed mapping method is less than 5 km in the direction perpendicular to the line of sight of ISS camera
- Time accuracy of the proposed mapping method is less than 0.3 seconds.
- \checkmark The data sets can be used for studying the temporal variation of PsA

- Derive the MLT dependence of the pulsating period of PsA
- Examine the relationship between the motion of PsA and the background plasma convection obtained from SuperDARN