

SuperDARN workshop August 9th 2016, NIPR, Japan

High-latitude Joule heating hot spot in the afternoon sector

Lei Cai^{1,2}, Anita Aikio², Steve Milan³

- 1. ISEE, Nagoya University, Japan
- 2. Ionospheric Physics Unit, University of Oulu, Finland
- 3. Department of Physics, Lancaster University, UK

Afternoon hot spots in the high-latitude ionosphere

- Close to 15 MLT and 75° MLAT
- Seen in several frameworks:

Motivation

- Cai et al. [2014]: 34 days of EISCAT CP2 measurements
 - During Septermber 2005 and November 2003.
 - Joule heating hot spots appear in all four IMF quadrants in the GSM y-z plane.
 - Indicating a region of persistent magnetospheric electromagnetic energy input.
- After Cai et al. [2014]: 233 days of CP2 measurements were collected from 2000 to 2014.
- What is the appearance of the hot spot depending on
 - Seasons (Equinox, Winter, and Summer)
 - IMF direction $(B_z \text{ and } B_y)$
 - Solar wind speed (v_{sw})
- What's the relationship between the hot spot and the FAC structures?

EISCAT CP2 measurements

- EISCAT Svalbard Radar (ESR)
 - ► 75.4 MLat
 - Close to polar cap boundary
- CP2 program
 - 3- or 4-position scan
- A powerful tool for measuring
 - Electron density (N_e)
 - Ion and electron tempretures
 (*T_i* and *T_e*)
 - Line-of-sight ion velocity (v_i)
- Estimate of conductivities and electric field
- Joule heating rate

$$q_E = \sigma_P E^2$$

Seasonal dependence

- Afternoon hot spot in Joule heating Q_E at ESR
 - 233-day CP2 data from 2000 to 2014
- Grouped into three seasons:
 - Equinox, summer, and winter
 - Best statistics in equinox

Seasonal dependence

- Similar magnitude of electric field
- Pedersen conductance: summer>equinox>winter
- Joule heating Q_E : summer>equinox>winter

IMF Bz and By distribution for slow-speed solar wind events ($v_{sw} < 450 \text{ km/s}$)

IMF Bz and By distribution for high-speed solar wind events ($v_{sw} > 450 \text{ km/s}$)

Joule heating hot spot and FACs

- 10:40 UT E_N: sunward plasma convection
- 13:10 UT E_S: anti-sunward plasma convection
- High EF, low Pedersen conductivity in Joule heating hot spot.
- Between the events, particle precipitation and higher Pedersen conductivity values.

Joule heating hot spot and FACs

- Field-aligned currents from AMPERE project
- IMF By rotation from positive to negative affects the large-scale FAC pattern (according to Anderson et al., 2008).
- 10:40 UT EN sunward plasma convection at R2/R1 FAC reversal
- 13:10 UT ES anti-sunward plasma convection at R1/R0 reversal
- Between the events, ESR is under upward R1 FAC and experiences particle precipitation.

Association with large-scale field-aligned currents

- Field-aligned current (FAC) map during 2010-2013 from AMPERE project.
- Joule heating afternoon hot spot occurs mostly under sunward convecting plasma.
- In most cases, hot spot is located close to the R2/R1 FAC reversal.
- If EISCAT is under anti-sunward convecting plasma, the hot spot occurs at the R1/R0 FAC reversal region.

Conclusions

- Pedersen conductances affect the seasonal variation of the afternoon hot spot values, though the hot spot values are primarily associated with high velocities of the convection flows.
- During slow solar wind speed conditions, hot spot events are favored by the southward IMF and positive By conditions.
- During high solar wind speed conditions, hot spot events can appear for not only southward but also northward IMF conditions with a large IMF By component.
- By analyzing the global FAC maps from the AMPERE project, we found that the afternoon Joule heating hot spots are located close to the reversals of the large-scale FACs

Thank you. Any questions, please?

