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Propagation process in the M-I coupled system 

Equatorial plane: 
fast mode wave propagation 
toward the Earth 
[e.g., Wilken et al., 1982; Keika et al., 2009] 

Along magnetic field lines: 
shear Alfven wave propagation 
toward the polar ionosphere 
[e.g., Lee and Lysak, 1989] 

[adapted from Hashimoto et al., 2002] 
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Sudden Commencement (SC) 
 solar wind dynamic pressure enhancement 

-> Compression of the dayside magnetopause 
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Evolution of electric fields: magnetosphere 

Electric field = key parameter of plasma transport 

[Kim et al., 2012] 

[Shinbori et al., 2004] 

MLT=12 

MLT=15 

MLT=18 

MLT=21 

MLT=24 

[Keika et al., 2009] 

Black dot:  
Ey (east-west) 

 At the onset of SC, westward electric fields respond 
quickly. 

 Propagation speed of the SC disturbances: 
300-1000 km/s (~fast mode wave) 
[e.g., Wilken et al., 1982; Araki, 1994; Keika et al., 2009] 
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Evolution of electric fields: ionosphere 

[Takahashi et al., 2015] 

 The field-aligned current flows toward the 
polar ionosphere. 

-> The ionospheric electric field is formed. 
 

 The dawn-dusk electric field transmits from 
polar toward low-latitude ionospheres at 
speed of light [e.g., Kikuchi and Araki, 1979b]. 

dayside nightside [Stauning and Troshichev, 2008] 

sunward 

upward 

downward 

Ephi 

PTK 

YAP 

ionospheric current 



Energy transport process 

 The field-aligned component of 
Poynting flux (P||) is dominant 
at the onset of SC. 
 

 The electromagnetic fields are 
associated with Alfvén wave 
propagating along field lines 
rather than fast mode wave. 

[Nishimura et al., 2010] 

Cluster satellite 
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MHD simulation 



Open issues 
Question 1: Time response 
 How do electric fields evolve in time? 

‐ The precise response time lag has not been deeply discussed yet. 
 

Question 2: Propagation Process 
 What is the propagation path in M-I coupled system? 

‐ particularly the connection between magnetosphere and ionosphere 
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dayside magnetosphere 
-> nightside magnetosphere 

& 
-> ionosphere (along field lines) 

dayside magnetosphere 
↓ (field line) 
ionosphere 

↓ (field line) 
nightside magnetosphere 
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Purpose of this study 

Ionosphere:  
SuperDARN, C/NOFS, HF Doppler radar, 

SWARM, DEMETER, etc… 

Magnetosphere:  
THEMIS, RBSP, GOES, ETS, MMS, ERG (2016-), etc… 

[NASA/ESA SOHO Mission] 

 The electric field is a key parameter to understand the propagation process in 
the M-I coupled system, but there are few reports that focus on the electric field. 

Using multi-point observations, we investigate 
1. the spatial and temporal variations of electric fields 
2. the propagation process in the M-I coupled system 

during SCs. 

 In order to understand the 
propagation process between 
magnetosphere and ionosphere, 
multi-point observations that 
locate in the M-I coupled system 
are needed. 

 

-> Now is a good time! 



Data set 
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Data set 
 THEMIS (5 probes; mainly use -A, -D, and -E)  

E-field (3 s)/B-field (3 s)/electron density (potential) 
 Van Allen Probes (RBSP, 2 probes) 

E-field (< 10.9 s)/B-field (4 s)/electron density (potential & fUHR) 
 GOES (-13, -15): B-field (0.512 s) 

 

 C/NOFS 
ion velocity (0.5 s)/B-field (1 s) -> We derive E (= -V x B). 

 SuperDARN (SD, near spacecraft footprints) 
 Ground magnetometers: 1-s resolution (THEMIS-GBO, WDC, etc.) 

 amplitude: > 10 nT 
 rise time: < 5 min 

 October 2012 ~ December 2014: 131 events 

Event Criteria -> SYM-H index 

January 2013 ~ December 2014 

130 events 
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2013-03-17 event: overview (onset = 0600 UT) 
Observation geometry 
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Fig. 
(left) Satellite location on the equatorial plane in 
GSM coordinate.  
(right) Footprint of satellites and locations of 
radars and a magnetometer in AACGM coordinate. 
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2013-03-17 event: magnetosphere 
E-field B-field 

KAK 
(H comp.) 

THA 

THD 

THE 

RBSPA 

RBSPB 

KAK 
(H comp.) 

THA 

THD 

THE 

RBSPA 

RBSPB 

G13 

G15 

1 2 3 1 2 3 

1. day (orange): THA 
2. dawn (green): THE 
3. night (blue): RSPB 

day -> dawn: ~24 s dawn -> night: ~32 s Time lag: ~20 s 



2013-03-17 event: ionosphere 

C/NOFS (~11 h LT) 
 dusk-to-dawn electric field (Ey) at 0600:55 UT  
  -> 19 s later than midnight E-field (line 3). 
 

SuperDARN 
(Hokkaido: 15 h LT, Rankin Inlet: ~23.5 h LT) 
 1-min resolution 
 Both radars detect negative flows. 
     (= dusk-to-dawn E-field) 

 Ionospheric electric fields propagate globally 
and simultaneously. 

       [e.g., Kikuchi, 2014; Takahashi et al., 2015] 

1. day (orange): THA 
2. dawn (green): THE 
3. night (blue): RSPB 
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? 

C/NOFS 
(dawn-dusk) 

1 3 

onset 
@ ionosphere 

HOK 

RKN 
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Poynting fluxes (= δE x δB/μ) 
2 3 

THA: day 

THE: dawn 

RBSPB: night 

1 

1. day (orange): THA 
2. dawn (green): THE 
3. night (blue): RSPB 

 day: S|| > 0 
     -> toward the ionosphere 
 dawn: Sr is dominant. 
     -> earthward propagation 
 night: Sr >0, S|| > 0 
     -> compressional waves  
         + toward the ionosphere 
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Statistical study: response time 

 color counter: time lag from KAK = (PI onsets at satellites) – (PI onset at KAK) 
-> cool color = The magnetospheric electric field responds faster than KAK. 

 

 Dayside (Orange frame): can be explained by fast mode wave propagation 
 Nightside (Blue frame): dawn- dusk asymmetric distribution 

 -> due to the asymmetry of plasmapause location? 

[Shinbori et al., 2003] 

cf. Akebono satellite 

sunward 



14 

Statistical study: response time 

 color counter: time lag from KAK = (PI onsets at satellites) – (PI onset at KAK) 
-> cool color = The magnetospheric electric field responds faster than KAK. 

 

 Dayside (Orange frame): can be explained by fast mode wave propagation 
 Nightside (Blue frame): dawn- dusk asymmetric distribution 

 -> due to the asymmetry of plasmapause location? 

sunward 

Electron density 

* Black circle: L = 6 
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Statistical study: Ey (dawn-dusk direction) 

(1) T= -60 s (2) T= 0 s 

(3) T= +60 s (4) T= +120 s 

1 2 3 4 

* positive: dawnward 

Westward electric field 
associated with the compression 

 

(1) -> (2): duskward (day) 
(3): dawnward (night) 

Convection electric field 
(4): dawnward (all MLT) 

~60 s after… 

Kakioka (SEA) 

0 100 200 300 -200 -100 -300 
response time [s] 



Summary: Possible propagation path 
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X-Y plane 

X-Z plane 

Fast mode wave propagation  
in the inner magnetosphere 

Global transmission of  
E-field in the ionosphere 

Magnetospheric 
convection 

Compression of  
the dayside magnetopause 

Alfven wave 
propagation  
along field lines 

equatorial 
plane 

? 
Energy transfer 
toward the nightside 
magnetosphere by 
Poynting flux 
[Nishimura et al., 2010] 

? 
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